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Can a Robot Become a Movie Director?
Learning Artistic Principles for Aerial Cinematography

Mirko Gschwindt!, Efe Camci?, Rogerio Bonatti®, Wenshan Wang®, Erdal Kayacan?, Sebastian Scherer?

Abstract— Aerial filming is constantly gaining importance
due to the recent advances in drone technology. It invites
many intriguing, unsolved problems at the intersection of
aesthetical and scientific challenges. In this work, we propose
a deep reinforcement learning agent which supervises motion
planning of a filming drone by making desirable shot mode
selections based on aesthetical values of video shots. Unlike
most of the current state-of-the-art approaches that require
explicit guidance by a human expert, our drone learns how
to make favorable viewpoint selections by experience. We
propose a learning scheme that exploits aesthetical features
of retrospective shots in order to extract a desirable policy
for better prospective shots. We train our agent in realistic
AirSim simulations using both a hand-crafted reward function
as well as reward from direct human input. We then deploy
the same agent on a real DJI M210 drone in order to test
the generalization capability of our approach to real world
conditions. To evaluate the success of our approach in the end,
we conduct a comprehensive user study in which participants
rate the shot quality of our methods. Videos of the system in
action can be seen at https://youtu.be/qmVw6mfyEmw.

I. INTRODUCTION

Aerial filming has invoked considerable attention within
both large-scale drone companies and well-established re-
search groups [1], [2], [3], [4]. While the accessibility of
personal filming drones is vast, there are still a number of
research problems in this area: to create safer, more compact,
aesthetically aware, user-friendly, and autonomous filming
drones. In this work, we address aesthetical awareness of
autonomous filming drones at the junction of well-known sci-
entific problems such as motion planning of unmanned aerial
vehicles in unknown environments and motion forecasting of
moving targets, e.g., humans, cars, bicycles.

Current state-of-the-art methods for aerial filming require
either complete or partial trajectory inputs from an expert
user. In this case, the job of the expert pilot is arduous. The
expert is required to solve a complex optimization problem
intuitively in a short time frame by considering dynamic
feasibility, collision avoidance, motion forecast of the actor,
and visual aesthetics simultaneously. We attempt to automate
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Fig. 1: Time lapse of drone trajectory during filming in photo-
realistic environment. Since the left hand side is occupied, the
drone switches from left to front and then right viewpoint.

this process by training a deep reinforcement learning (RL)
agent with aesthetical awareness.

Deep RL has started revolutionizing many research areas in
recent years. It has shown great success in accomplishing tasks
which are substantially difficult to be hard-coded or planned in
advance such as playing Atari games [5], Go [6] and learning
dynamic motor skills for legged robots [7] or recovery
maneuvers for multi-rotors [8]. Besides these tasks where
a well-specified reward function is available, it has yielded
promising results when designing a suitable reward function
is non-trivial such as socially compliant robot navigation [9],
[10]. While both classes of problems are already challenging,
task success subjectivity makes the learning process even
harder in some cases. To solve these tasks deep RL has
successfully incorporated human preferences (human reward
functions) [11], [12] while achieving a higher level goal.
Inspired by the competitive success of these RL algorithms,
we propose a novel RL system for autonomous aerial
filming by incorporating both hand-crafted and human reward
functions in this work.

We build upon our previous work [13] in which smooth and
safe trajectories are generated in real-time using CHOMP
[14]. In our previous motion planning pipeline, CHOMP
is utilized to optimize the cinematographic trajectories by
considering cost functions for smoothness, shot quality, safety,
and occlusion avoidance. The process is detailed further in
[15]. However, it needs a higher level input from the user,
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Fig. 2: Our overall system flow merged into a generic RL diagram.

i.e., shot mode, which defines the raw cinematographic path.
It uses this path as a baseline while conducting trajectory
optimization. In order to automate the overall filming process
even further, we train a deep RL agent which provides
the shot type input intelligently, replacing the user input
(Fig. 2). Starting from no prior knowledge, the agent selects
different shot types (action) for different situations (state)
and observes their corresponding values (reward) based on
certain aesthetical criteria. While these criteria are coded
into a complex mathematical function considering widely-
recognized cinematographic rules for the hand-crafted reward,
they are solely humans’ aesthetical assessment in the case
of the human reward function. Using this retrospective
knowledge enhanced over numerous trials, the agent explores
a desirable policy which is able to replace external user inputs
and supervise the whole filming process autonomously. The
specific contributions of this work are:

o A deep RL agent which supervises viewpoint selection
for aerial filming;

« Incorporating human preferences into aesthetical metrics;

« A comprehensive user study to evaluate our method;

o Real world tests with a filming drone.

II. RELATED WORK

Intelligent shot mode or viewpoint selection for aerial
camera control borrows concepts from the disparate fields
of virtual cinematography, aerial filming, human-preference
learning, and learning artistic beauty. We go through each of
these briefly in the next subsections.

A. Arts and computer graphics

Camera control in virtual cinematography has been exten-
sively examined by the computer graphics community [16].
These methods usually employ through-the-lens control where
a virtual camera is manipulated while maintaining focus on
certain image features [17], [18], [19], [20]. Artistic features
for camera control follow different empirical principles known
as composition rules [21], [22].

Several works analyse the choice of which viewpoint to
employ for a particular situation. For example, in [18], the
researchers use an A* planner to move a virtual camera in

pre-computed indoor simulation scenarios to avoid collisions
with obstacles in 2D. More recently, we find works such
as [23] that post-processes videos of a scene taken from
different angles by automatically labeling features of different
views. The approach uses high-level user-specified rules which
exploits the formerly labeled features in order to automatically
select the optimal sequence of viewpoints for the final movie.
Besides, [24] helps editors by defining a formal language of
editing patterns for movies.

B. Autonomous aerial cinematography

We also see works specific to aerial cinematography using
unmanned aerial vehicles. For example, [4], [25], [26], [27]
focus on key-frame navigation, filming static landscapes or
structures. [28] also touches the idea of image key-frames,
which are defined by a user using through-the-lens control
instead of positions in the world frame.

Another line of work on aerial filming focuses on tracking
moving targets in dynamic contexts. For example, [1], [2], [3],
[13], [29] present different approaches with varying levels of
complexity in terms of obstacle and occlusion avoidance as
well as real-life applicability.

C. Making artistic choices autonomously

A common theme behind all the work presented so far is
that a user must always specify which kind of output they
expect from the system in terms of artistic behavior. If one
wishes to autonomously specify artistic choices, two main
points are needed: a proper definition of a metric for artistic
quality of a scene, and a decision-making agent which takes
actions that maximize this quality metric.

Several works explore the idea of learning a beauty
or artistic quality metric directly from data. [30] learns
a measure for the quality of selfies; [31] learns how to
generate professional landscape photographs; [32] learns how
to transfer image styles from paintings to photographs.

On the action generation side, we find works that have
exploited deep RL [5] to train models that follow human-
specified behaviors. Closely related to our work, [12] learns
behaviors for which hand-crafted rewards are hard to specify,
but which humans find easy to evaluate. In the field of



autonomous drone filming [33] tries to learn different drone
filming styles by deploying an imitation learning approach.

Our work, as described in Section III, brings together ideas
from all the aforementioned areas to create a generative RL
model for shot type selection in aerial filming drones which
maximizes an artistic quality metric and specifically considers
the surrounding environment.

ITII. APPROACH
A. Learning objectives

The main aim of our deep RL agent is to supervise motion
planning of a filming drone intelligently by selecting desirable
viewpoints at the right time. The agent is expected to create
desired viewpoint sequences while satisfying the following
conditions:

o The actor is in view and within desired shot angle limits.

« The overall video switches shot directions to not only
show one side of the actor and keep the shot interesting.

o The drone does not collide with obstacles.

o The overall video sequence is aesthetically pleasing.

B. RL Problem Formulation

The main challenge in applying RL successfully in real-
world scenarios is to formulate the problem in such a way
that the agent is able to derive useful representations of the
environment and it is able to exploit these to generalize to
new situations using an evaluative feedback, i.e., reward. In
this vein, the proposed approach can be examined in three
folds, each referring to the main elements of RL, i.e., state,
action, and reward.

1) State: In the proposed approach, state (s) consists of
three elements: a 2.5D local height map around the actor,
current shot type, and repetition count for the current shot type.
The 2.5D map around the actor gives insight into obstacles
close to the actor and paths the actor is likely to take based
on obstacle locations. It is an informative representation of
the local environment which is composed of a grayscale
image in which each pixel has a value governing the highest
obstacle occupying that grid. Alongside its informativeness,
it is compact enough to be fed into a deep Q-network (DQN)
easily. It is represented as a 24 x24 matrix containing values
between 0 and 255.

The current shot type is included in the state definition
in order to provide a grasp of favorable switching between
different modes. That is, although a particular shot type works
the best for a given situation, direct switching to that mode
from the agent’s current shot mode may be undesirable due
to a difficult transition between two shot modes considering
the control effort for the drone. While the shot types available
in today’s filming drones have a variety such as left/right,
front/back, orbit, high pan, fly-through, etc., we focus on the
four basic types in this work: left, right, front, and back shot.
The current shot type is coded as a one-hot vector in order
to be fed to the DQN easily.

The repetition count for the current shot type is a number
that states for how many time steps the current shot type
has been applied repeatedly since the last switch, where

one time step, and therefore the time between each drone
decision, lasts 6s'. Because keeping the same shot type
for a long duration would possibly be undesirable from a
cinematographic perspective, this number provides insight
into whether the shot stagnates so long that it might become
boring. This number is normalized to a value between 0 and
1 before being fed to the DQN.

2) Action: The action is the shot mode that the agent
selects at the beginning of each time step. Similar to the
current shot type element of state, our action space is
composed of four different shot modes, i.e., left, right, front,
and back. Each shot mode selection results in a new desired
cinematographic path for our low-level planning algorithm
(CHOMP) at each time step. The essential aim of the agent
is to explore the desirable shot mode sequences in a given
situation to maximize the sum of the rewards.

3) Hand-crafted reward: We attempt to encode the artistic
requirements with four elements:

Shot angle Ry, is related to the current UAV tilt angle
0, relative to the actor. We define an optimal value 0; ¢
and an accepted tolerance 6 ;,; around it. Between those we
decay the reward linearly from R,, = 1.0 at 6; = 0; ot tO
Rsq = 0.0 at the tolerance boarders 0; = 0y opt £ 01 101, We
assign a negative punishment of R,, = —0.5, if the angle
falls out of bounds.

Actor’s presence ratio R, is related to the space that
the actor occupies in the camera image compared to the
image size. Based on the shot scale, actor size, and camera
parameters, we set two bounds pry,;, and pry,., and use the
heuristic that an ideal presence ratio lies in between them?”. If
the detected presence ratio lies inside these bounds we pass
on our previous reward R, = R,,. Otherwise, we assign a
negative punishment of R,, = —0.5.

The relative UAV tilt angle and the actor’s presence ratio
are measured for each frame over a video clip (N frames in
a video clip) obtained during each time step and the resulting
rewards are averaged to an intermediate reward Rq.4 at the
end of each time step:

1 N
Ravg = N Z Rpr,i (1)
=1

Shot type duration: o, is a reward coefficient related to
the length of the current shot type given by a repetition count
c. We use the heuristic that an ideal shot length is of ¢,
time steps, and define o in Equation 2. Assuming cop; = 2
for example, o varies over c as in Fig. 3.

_c

Copt ’

Sopt. otherwise

if ¢ < copt

2)

Qe =

Time step duration is selected as 6s due to a limitation enforced by our
low-level planning algorithm, CHOMP. When a new shot mode is selected on-
the-fly, it takes time for CHOMP to generate an intermediate path which will
move the drone from its current viewpoint to the newly selected viewpoint.
The duration of 6s has been observed to be a decent time interval for this
purpose.

2The boundaries for shot angle and presence ratio are a result of empirical
data gained from numerous informal trials.
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count ¢, assuming an optimal repetition count cp¢ of 2.

We discount our reward for shot repetition as follows:

. Ravg - Qe
Raiscounted = Ravg

a. !

if Ryug >0
otherwise.

3)

Collision punishment R, is related to UAV safety. If the
UAV crashes during a time step, R., = —1.0; otherwise,
Rep, =0.

We define the total reward R for a time step as:

R— Rc;m
Rdiscounteda

4) Reward from human preferences: Because it can be
difficult to define aesthetical values in a mathematical reward
function precisely, we test another training approach where
the reward is directly generated by the human perception of
aesthetics (Fig. 4). We use the same training pipeline with
the same hyperparameters for our human reward training as
for all our other training sessions. The only difference being
that the reward given during training is not delivered by a
mathematical function, but by humans rating the shot quality
of the scene on-the-fly. During training, multiple people from
our lab constantly rate the observed camera image. Every
time step (6s), the rating person is asked to give an evaluation
from 1 to 5 stars for shot quality, or O for a collision. This
rating is mapped linearly to a reward ranging from -0.5 to
+1, and -1 for a collision, respectively. The range of rewards
resembles the possible rewards from our hand-crafted reward
configuration.

if Rep =—1.0
otherwise.

“4)

C. Algorithmic Details

The essential idea behind the use of DQN is to estimate the
highly complex action-value function Q(s,a) which yields
the value of an action taken on a particular state considering
its long-run gains for the agent. It is formally defined as:

Qs,) = E (Risa +ymax Q(sis1,0')| st = 5,00 = a)
%)
where s; is the current state and a; is the action taken. The
terms s,y and R, are the next state that the agent reaches
and the reward it observes, respectively. The term + is the
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Fig. 4: Training pipeline with human in the loop.
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Fig. 5: DQN architecture.

discount factor which determines the present value of future
rewards [34].

The DQN considered in this work is composed of fully
connected neural networks which fuse three different inputs
in three main lanes. The architecture is depicted in detail
in Fig. 5. Three inputs (2.5D local map, current shot type,
repetition count for the current shot type) are first fed through
three different lanes separately. Then, they are combined in
a single lane which eventually yields the Q values for each
action. All consecutive layers are fully connected to each
other, and all of them apply ReLU (rectified linear unit) with
the exception of the very last layer. We train this network
using Adam optimizer [35] with default settings in PyTorch.
We use Huber loss [36] for creating the gradient for the
parameter update.

The pseudocode for overall training using experience replay
(ER) is given in Algorithm 1.

IV. SYSTEM

A. Simulation

We train our agent exclusively in simulation. The envi-
ronment we use for training is the Microsoft AirSim ([37]).
AirSim is an open source simulation environment for drones
and cars that is based on the games engine Unreal Engine.
It offers the ability to simulate highly realistic conditions,
especially for aerial vehicles.

1) Artificial Worlds: We train our agent in different types
of artificial world settings. In our simple block environment,



Algorithm 1 Pseudocode for training DQN.

for i in episodes do
observe state s
for t in timesteps do
take action a governed by e-greedy policy
observe state s’ and reward R
save data sample (s,a,s’,R)
s:=s
update experience replay (ER) with the new data
end for
if i % min episodes for update == 0 then
divide ER into random minibatches of size n
for j in minibatches do
apply Yi:n = Rl:n + 7 maXg Q(sllzn’a/; 01)
update DQN Weights bY L&(yl:n - Q(Slznaalzn; 97,))
end for
end if
end for
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Fig. 6: Screenshots and height maps of AirSim environments.
Actor routes: a) red: block world training route, blue: block
world test route 1, green: block world test route 2, b) yellow:
bigmap long route, ¢) orange: neighborhood training route,
purple: neighborhood test route.

the actor is walking on a path with alternating blocks on the
left and right side in varying heights and lengths (Fig. 6a).

Our second artificial training environment is a much larger
map that is separated into three distinguishable areas: a
slightly more complex block area, an area with two parallel
rows of pillars, and an area with mountain-like structures
(Fig. 6b). In contrast to the former simple block environment,
the block section of the larger map features varying sizes of
corridors, more different block shapes, and better possibilities
for traversing in multiple directions. This section is created
to resemble a city landscape.

The column section features two rows of lean pillars in
varying heights. In contrast to the block section, the obstacle
shapes are much slimmer.

The mountain section features three rows of mountain-
shaped structures. All mountains are similar in shape and
modeled after a real world drone testing environment near
Pittsburgh. The exact height and shape of the mountains are

Fig. 7: Real robot with its on-board sensors on the left and
in action in the test facility on the right (drone marked by
red square).

randomly created within a predefined range.

There are four training routes that the actor can walk
along in the larger environment: through the block section,
through the pillars, in between the mountains, and a large
route through the whole map. We also let the actor walk
randomly over the map (‘roaming’). In this mode, the actor
randomly selects a point on the map and takes the shortest
route towards that point. Afterwards, the actor randomly
chooses the next point.

2) Photo-realistic World: To showcase scenarios closer
to real world environments, we also train our agent in a
slightly modified version of the ‘Neighborhood’ environment
by Unreal Engine (Fig. 6¢). This environment offers a photo-
realistic simulation of a suburban residential area that could
act as the place of a movie scene. We create an actor trajectory
along streets, houses, bushes, trees, and cars to have a variety
of obstacles that could interfere with the drone. We also make
use of the roaming approach for training again.

B. Hardware

We train our agent exclusively in simulation. However, for
testing, we deploy our algorithm in real world conditions.
Our platform is a DJI M210 drone, shown in Fig. 7. All
processing is done with an NVIDIA Jetson TX2 computer,
with 8GB of RAM and 6 CPU cores. An independently
controlled gimbal DJI Zenmuse X4S records high-resolution
images. We operate in pre-mapped environments, for which
we generate a height map that is later cropped locally and
used as one of the inputs for the network.

Our pre-mapped testing facility near Pittsburgh, PA has a
heap of rubble that is used as the obstacle for the experiments.

V. RESULTS

For the purpose of presenting training and testing results,
we consider 5 consecutive time steps (each with a duration
of 6s) per episode. Therefore, each episode entails 5 decision
points and 30 seconds of filming. Training is performed
over 300-2000 episodes, depending on the complexity of the
environment and the length of the training route.

A. Hand-crafted reward

1) Artificial worlds: We train the agent in our simple block
world for 300 episodes (Fig. 8). This environment offers a
decent opportunity to evaluate the performance of the trained
agent as it has a clear pattern of blocks that the drone can



TABLE I: Average rewards per time step for testing in block
world environment.

Training map Test map 1  Test map 2
Random policy -0.0061 0.0616 0.0308
Trained policy 0.3444 0.3581 0.3662
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Fig. 8: Reward curves during training for hand-crafted reward
and human reward (30 episodes grouped to one data point).
left: block world, right: neighborhood.

avoid. Our agent performs significantly better than a random
policy in the training environment, as well as in the two
previously unknown testing environments (Table I)*. Our
agent is able to achieve all goals that it was supposed to
learn:

« It keeps the actor in view by preferring 90° shot mode
switches (i.e., from left to back or front) to 180° switches
(i.e., from left to right), which often lose sight of the
actor.

« It switches shot types regularly to keep the shot inter-
esting.

« It avoids flying above obstacles to keep the shot angle
in desirable limits.

« It avoids extremely high obstacles which might pose a
threat of crashing.

It achieves these goals both in the training map and in the
testing maps.

In our second artificial training environment (bigmap), we
train our agent in different sections of the map in a range
of 1000-2000 episodes (Table II). In all routes, a significant
increase of rewards over a random policy can be noticed.
Even around more complex structures like mountains, our
agent satisfies our goals of keeping the actor in view, keeping
the shot within the desired shot angle limits, switching shot
type for an interesting scene, and avoiding high obstacles
due to the danger of crashes. Only in the pillar section of the
environment, the trained policy is not able to avoid occlusions.
This is a result of our reward function not punishing short
occlusions very harshly. Due to the thin, cylindrical shape
of the pillars, the agent will only be occluded for very short
time frames, thus the rewards are still acceptable.

2) Photo-realistic world: In our photo-realistic neighbor-
hood environment, we train our agent on a fixed training
route for 500 episodes (Fig. 8) and in roaming mode for
2000 episodes.

3The standard deviation for rewards of all trained policies is in the
magnitude of 0.1.

TABLE II: Average rewards per time step for policies trained
in bigmap environment. All policies are tested on their
respective training route.

Mountain  Block Pillar Long

route route route route

Random policy 0.2654 0.1203  0.2319  0.1944
Trained policy 0.5908 0.3957 0.4687  0.5052

TABLE III: Average rewards per time step for testing in
neighborhood environment.

Neighborhood test route
Random policy 0.2047
Bigmap long route policy 0.5760
Bigmap block section policy 0.4638
Neighborhood training route policy 0.5882
Neighborhood roaming policy 0.5546

Our results in the photo-realistic environment (Table III,
Fig. 1) show that our agent is capable of handling real world
scenarios. While the policy trained on the training route of the
neighborhood environment performs best, the policy trained
on the long route in the bigmap environment gets surprisingly
close, confirming a successful generalization from an artificial
map to a realistic environment. The policy trained solely in the
block section of bigmap performs significantly worse, despite
the idea of the blocks resembling the shapes of houses. It
seems like the policy overfits to the block shape and cannot
handle different shapes like trees and houses with sloping
roofs.

3) Real world: To test our trained policy in a real world
setting, we implement our shot selection algorithm on the
aforementioned DJI M210 drone. We test the algorithm
around a heap of rubble in the Gascola region near Pittsburgh,
PA (Fig. 7). For the testing procedure, we deploy a DQN
which was previously trained in the mountain section of the
bigmap environment. We shoot 3 video clips comparing 3
different drone filming policies:

« our trained policy;
« a policy that stays exclusively in the back of the actor;
« a policy that selects an action randomly.

Our trained policy is able to transfer the learned objectives
to the real world environment. It chooses shot modes based
on the environment, the heading of the actor, and the current
drone position relative to the actor. The shot selection follows
all previously learned principles to form a smooth, occlusion-
free, and interesting film scene. Our algorithm performs in
real time. A forward pass through the network to select the
next shot takes 10ms.

The random policy and the back shot policy serve as a
reference for the shot quality. Neither of these policies result
in a satisfactory video clip. The back shot policy produces a
very stable, but also unexciting shot while the random policy
results in a lot of turbulent drone movements that lose sight
of the actor multiple times. Only the trained policy is able
to produce a satisfactory video clip.



B. Reward from human preferences

Visual aesthetics are subjective and difficult to define
through a mathematical function. Therefore, we compare
the results of our hand-crafted reward policy to the results
of a policy trained through human reward. Since the amount
of time and effort which the participants can dedicate are
limited, this training is only performed in two maps, the
simple block world and the neighborhood environment for
300 episodes and 500 episodes, respectively (Fig. 8). The
valleys in the reward curves are caused by different human
raters having different subjective evaluations of the quality of
a shot. While the reward curve is not as steadily increasing
as in the previous training sessions, the final reward and the
difference to the initial reward are a lot higher, indicating a
strong increase in knowledge. To get a numerical evaluation of
the human trained policies and compare them to our previous
policies, we conduct a user study.

C. User study results

In the user study for evaluating drone filming policies, we
ask 10 participants to watch video clips taken by different
policies and to order them as well as to write a short comment
about each clip. We use 4 different policies to create the video
clips:

« our policy trained using the hand-crafted reward function;

« our policy trained by human preferences;

« a policy that always stays in the back of the actor;

« a policy that selects actions at random.

This way, we can compare both of our own policies to each
other as well as to two baseline policies. The back shot policy
takes the role of the safe option that can film the actor in
almost any situation without having occlusion problems. The
random policy is there as a sanity check to ensure that our
trained policies are performing better than arbitrary actions.
During the study, we present participants with a total of 5
scenes, two from the simple block world environment and
three from the neighborhood environment. The scenes are
selected based on interesting obstacles. None of the scenes
were previously encountered by either of the trained policies.
For the simple block world environment, the policies are
trained for 300 episodes in the training map and the video
clips taken in the first testing map. For the neighborhood
environment scenes, we train our agent for 500 episodes on
the neighborhood training route. The scenes are chosen from
different parts of the map not featured on the training route.

For each of the scenes, participants watch four 30s-video
clips, one for each policy. The order of the video clips is
randomized. After each scene, participants are asked to order
the clips from ‘most visually pleasing’ to ‘least visually
pleasing’ and to write a short comment for each clip.

The results of the user study are shown in Table IV.

VI. DISCUSSION

Our user study showcases that both our trained policies,
one with a hand-crafted reward function and one trained
through rewards via human input, perform significantly better
than a random policy or one that only stays in one shot

TABLE IV: Average score of video clips in the user study
(from O: worst to 10: best) via linear transformation from
average rated position.

Average Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
Hand-crafted 8.2 10.0 53 9.3 7.7 8.7
Human 7.1 5.0 9.0 6.0 7.7 8.0
Back shot 3.8 4.0 4.7 43 4.0 2.0
Random 0.9 1.0 1.0 0.3 0.7 1.3

mode. Video clips from both policies are consistently rated
the two highest in different environments on sceneries that
were previously unknown to them. While the hand-crafted
reward policy performs slightly better on average, participants’
opinions are very divided in some cases.

The stated comments offer insight into the ranking of
the four policies and human evaluation of drone filming
aesthetics:

« All participants criticize the back shot policy as ‘boring’
or ‘unexciting’.

o All participants mention that the random policy loses
view of the actor too often.

« The most common complaint is that the actor gets out
of view.

e There is a small window of how often the view angle

should change. Many participants complain about too

few changes, when only one shot angle change is

performed. On the other hand, many participants criticize

too much camera movement in a scene where the drone

switches every time step.

Participants frequently mention that they would like

to get an overview of the surrounding instead of just

seeing the actor in front of a building or a wall. When

the drone gives multiple fields of view around the actor

by switching the shot angle, this is positively remarked.

o The hand-crafted reward policy is often described as
the most exciting while the human reward policy is
described as very smooth.

The main difference between the hand-crafted reward policy
and the human reward policy is the consistency of switching
shots. Our hand-crafted reward function leads to a policy
that tries to switch exactly every 2 time steps (12s), if not
disturbed by an obstacle. Based on the user study results, this
seems to be a relatively favorable time frame that achieves
not being too boring while still giving enough time to get a
good impression of the scene. The human reward policy is
less consistent and switches the shot type more irregularly.
We assume that an optimal switching frequency depending on
the surrounding environment can be learned by more human
training data input. Another interesting result of the study is
that losing the view of the actor, even for a very short moment,
is always rated as being very poor by the participants of the
study. No policy that loses sight of the actor at any point is
rated the highest in any scene. This leads to the conclusion
to punish a loss of view of the actor even more harshly for
future training episodes.



VII. CONCLUSION

In this work, we present a fully autonomous drone
cinematographer that follows a moving actor while making
intelligent decisions about the shot type in real time. These
decisions are based on previous experience, gained during
training via deep RL with a hand-crafted as well as a human-
generated reward function. Our approach works robustly in
realistic simulation environments as well as in real world tests
on a physical drone and successfully generalizes to previously
unseen environments. The decisions about the shot direction
acknowledge the environment around the actor and follow
cinematographic principles such as occlusion avoidance, flat
shot angles and frequent camera angle switches. Our user
study confirms that our trained policies satisfy the human
sense for aesthetics and offers insight into possible future
improvements of the algorithm.
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