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Abstract—The use of drones for aerial cinematography has
revolutionized several applications and industries that require
live and dynamic camera viewpoints such as entertainment,
sports, and security. However, safely controlling a drone while
filming a moving target usually requires multiple expert human
operators; hence the need for an autonomous cinematographer.
Current approaches have severe real-life limitations such as
requiring fully scripted scenes, high-precision motion-capture
systems or GPS tags to localize targets, and prior maps of the
environment to avoid obstacles and plan for occlusion.

In this work, we overcome such limitations and propose a
complete system for aerial cinematography that combines: (1)
a vision-based algorithm for target localization; (2) a real-time
incremental 3D signed-distance map algorithm for occlusion
and safety computation; and (3) a real-time camera motion
planner that optimizes smoothness, collisions, occlusions and
artistic guidelines. We evaluate robustness and real-time perfor-
mance in series of field experiments and simulations by tracking
dynamic targets moving through unknown, unstructured envi-
ronments. Finally, we verify that despite removing previous
limitations, our system achieves state-of-the-art performance.

I. INTRODUCTION

In this paper, we address the problem of autonomous
cinematography using unmanned aerial vehicles (UAVs).
Specifically, we focus on scenarios where an UAV must
film an actor moving through an unknown environment at
high speeds, in an unscripted manner. Filming dynamic
actors among clutter is extremely challenging, even for
experienced pilots. It takes high attention and effort to
simultaneously predict how the scene is going to evolve,
control the UAV, avoid obstacles and reach desired viewpoints.
Towards solving this problem, we present a complete system
that can autonomously handle the real-life constraints involved
in aerial cinematography: tracking the actor, mapping out the
surrounding terrain and planning maneuvers to capture high
quality, artistic shots.

Consider the typical filming scenario in Fig 1. The UAV
must accomplish a number of tasks. First, it must estimate the
actor’s pose using an onboard camera and forecast their future
motion. The pose estimation should be robust to changing
viewpoints, backgrounds and lighting conditions. Accurate
forecasting is key for anticipating events which require
changing camera viewpoints. Secondly, the UAV must remain
safe as it flies through through new environments. Safety
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requires explicit modelling of environmental uncertainty.
Finally, the UAV must capture high quality videos which
require maximizing a set of artistic guidelines. The key
challenge is that all these tasks must be done in real-time
under limited onboard computational resources.

There is a rich history of work in autonomous aerial filming
that tackles parts of the challenges. For instance, several
works focus on artistic guidelines [1]-[4] but often rely on
perfect actor localization through high-precision RTK GNSS
or motion-capture systems. Additionally, while the majority
of work in the area deals with collisions between UAV and
actors [1], [2], [5], the environment is not factored in. While
there are several successful commercial products, they too
have certain limitations to either low speed and low clutter
regimes (e.g. DJI Mavic [6]) or shorter planning horizons
(e.g. Skydio R1 [7]). Even our previous work [8], despite
handling environmental occlusions and collisions, assumes a
prior elevation map and uses GPS to localize the actor. Such
simplifications impose restrictions on the diversity of real-life
scenarios that these systems can handle.

We address these challenges by building upon previous
work that formulates the problem as an efficient real-time
trajectory optimization [8]. In this work we make a key
observation: we don’t need prior ground-truth information
about the scene; our onboard sensors suffice to attain good
performance. However, sensor data is noisy and needs to
be processed in real-time; therefore we develop robust and
efficient algorithms. To localize the actor, we use a visual
tracking system. To map the environment, we use a long-
range LiDAR and process it incrementally to build a signed
distance field of the environment. Combining both methods,
we can plan over long horizons in unknown environments to
film fast dynamic actors according to artistic guidelines. In
summary, our main contributions in this paper are threefold:

1) We develop an incremental signed distance transform
algorithm for large-scale real-time environment mapping
(Section IV-B);

2) We develop a complete system for autonomous cine-
matography that includes visual actor localization, online
mapping, and efficient trajectory optimization that can
deal with noisy measurements (Section IV);

3) We offer extensive quantitative and qualitative perfor-
mance evaluations of our system both in simulation and
field tests, while also comparing performance changes
with scenarios with full map and actor knowledge
(Section V).
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Aerial cinematographer: a) The UAV forecasts the actor’s motion using camera-based localization, maps the environment with a LiDAR, reasons

about artistic guidelines, and plans a smooth, collision-free trajectory while avoiding occlusions. b) Accumulated point cloud during field test overlaid with
actor’s motion forecast (blue), desired cinematography guideline (pink), and optimized trajectory (red). ¢) Third-person view of scene and final drone image.

II. PROBLEM FORMULATION

The overall task is to control a UAV to film an actor who is
moving through an unknown environment. We formulate this
as a trajectory optimization problem where the cost function
measures shot quality, environmental occlusion of the actor,
jerkiness of motion and safety. This cost function depends
on the environment and the actor, both of which must be
sensed on-the-fly. The changing nature of environment and
actor trajectory also demands re-planning at a high frequency.

Let &, [0,t] — R3 x SO(2) be the trajectory of
the UAV, ie., &(t) = {z(t),y(t), 2(t),¥q(t)} . Let &, :
[0,2] = R3 x SO(2) be the trajectory of the actor, &, (t) =
{z(t),y(t), 2(t),¥q(t)}. The state of the actor, as sensed
by onboard cameras, is fed into a prediction module that
computes &, (Section IV-A).

Let grid G : R? — R be a voxel occupancy grid that maps
every point in space to a probability of occupancy. Let M :
R? — R be the signed distance values of a point to the
nearest obstacle. Positive sign is for points in free space, and
negative sign is for points either in occupied or unknown
space, which we assume to be potentially inside an obstacle.
The UAV senses the environment with the onboard LiDAR,
updates grid G, and then updates M (Section IV-B).

We briefly touch upon the four components of the cost
function J (§;) (refer to Section IV-C for mathematical
expressions). The objective is to minimize J (&) subject
to initial boundary constraints &,(0).

1) Smoothness Jsmooth (§4): Penalizes jerky motions that
may lead to camera blur and unstable flight;

2) Shot quality Jgnot (&4,&,): Penalizes poor viewpoint
angles and scales that deviate from the artistic guidelines

3) Safety Jobs (&g, M): Penalizes proximity to obstacles
that are unsafe for the UAV.

4) Occlusion Joec (&4, &as M): Penalizes occlusion of the
actor by obstacles in the environment.

Jsmooth (Eq)
Jshot (gqa ga)
Jobs (§q7 M)
Jocc (gqa gav M)
S.t. §q(0) = {x()v Yo, 20, /¢O}

(D

JE)=[1 M Ao Ag]

§, =argmin J(§,),
The solution £ is then tracked by the UAV.

III. RELATED WORK

a) Virtual cinematography: Camera control in virtual cine-
matography has been extensively examined by the computer
graphics community, as reviewed by [9]. These methods
tend to reason about the utility of a viewpoint in isolation,
following artistic principles and composition rules [10], [11]
and employ either optimization-based approaches to find
good viewpoints, or reactive approaches to track the virtual
actor. The focus is typically on through-the-lens control
where a virtual camera is manipulated while maintaining
focus on certain image features [12]-[15]. However, virtual
cinematography is free of several real-world limitations such
as robot physics constraints and assumes full map knowledge.

b) Autonomous aerial cinematography: Several contributions
on aerial cinematography focus on keyframe navigation. [16]—
[20] provide user interface tools for re-timing and connecting
static aerial viewpoints for dynamically feasible and visually
pleasing trajectories. [21] use key-frames defined on the image
itself instead of world coordinates.

Other works focus on tracking dynamic targets, and employ a
diverse set of techniques for actor localization and navigation.
For example, [5], [22] detect the skeleton of targets from
visual input, while others approaches rely on off-board actor
localization methods from either motion-capture systems
or GPS sensors [1]-[4], [8]. These approaches have a
varying level of complexity: [4], [8] can avoid obstacles
and occlusions with the environment and with actors, while
other approaches only handle collisions and occlusions caused
by actors. We also observe distinct trajectory generation
methods randing from trajectory optimization to search-based



TABLE I
COMPARISON OF DYNAMIC AERIAL CINEMATOGRAPHY SYSTEMS

Online Actor Onboard Avoids Avoids Online

Ref map localiz.  comp. occl. obst. plan

[3] X X X X X v

[1] X X X X Actor v

[2] X X X Actor Actor v

[4] X X X v v v

[22] X v v X Actor v

[5] X v v X Actor v

[8] X Vision v v v v
Ours v v v v v v

planners. In Table I we summarize different contributions, also
differentiating onboard versus off-board computing systems.
It is important to notice that prior to our current work, none
of the previous approaches provided a solution for online
environment mapping.

c) Online environment mapping: Dealing with imperfect
representations of the world becomes a bottleneck for
viewpoint optimization in physical environments. As the
world is sensed online, it is usually incrementally mapped
using voxel occupancy maps [23]. To evaluate a viewpoint,
methods typically raycast on such maps, which can be very
expensive [24], [25]. Recent advances in mapping have led
to better representations that can incrementally compute the
truncated signed distance field (TSDF) [26], [27], i.e. return
the distance and gradient to nearest object surface for a
query. TSDFs are a suitable abstraction layer for planning
approaches and have already been used to efficiently compute
collision-free trajectories for UAVs [28], [29].

d) Visual target state estimation: Accurate object state
estimation with monocular cameras is critical to many robot
applications. Deep networks have shown success in detecting
objects [30], [31] and estimating 3D heading [32], [33]
with several efficient architectures developed specifically for
mobile applications [34], [35]. However, many models do
not generalize well to other tasks (e.g., aerial filming) due
to data mismatch in terms of angles and scales. Our recent
work in semi-supervised learning shows promise in increasing
model generalizability with little labeled data by leveraging
temporal continuity in training videos [36].

Our work exploits synergies at the confluence of several
domains of research to develop an aerial cinematography
platform that can follow dynamic targets in unknown and
unstructured environments, as detailed next in our approach.

IV. APPROACH

We now detail our approach for each sub-system of the aerial
cinematography platform. At a high-level, three main sub-
systems operate together: (A) Vision, required for localizing
the target’s position and orientation and for recording the
final UAV’s footage; (B) Mapping, required for creating
an environment representation; and (C) Planning, which
combines the actor’s pose and the environment to calculate
the UAV trajectory. Fig. 2 shows a system diagram.
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Fig. 2. System architecture. Vision subsystem controls camera’s orientation
and forecasts the actor trajectory &, using monocular images. Mapping
receives LiDAR pointclouds to incrementally calculate a truncated signed
distance transform (TSDT). Planning uses the map, the drone’s state
estimation and actor’s forecast to generate trajectories for the flight controller.

A. Vision sub-system

We use only monocular images from the UAV’s gimbal
and the UAV’s own state estimation to forecast the actor’s
trajectory in the world frame. The vision sub-system counts
with four main steps: actor bounding box detection and
tracking, heading angle estimation; global ray-casting, and
finally a filtering stage. Figure 3 summarizes the pipeline.

a) Detection and tracking: Our detection module is based on
the MobileNet network architecture, due to its low memory
usage and fast inference speed, which are well-suited for
real-time applications on an onboard computer. We use the
same network structure as detailed in our previous work
[36]. Our model is further trained with COCO [37] and
fine-tuned on a custom aerial filming dataset. We limit the
detection categories to person, car, bicycle, and motorcycle,
which commonly appear in aerial filming. After a successful
detection we use Kernelized Correlation Filters [38] to track
the template over the next incoming frames. We actively
position the independent camera gimbal with a PD controller
to frame the actor on the desired screen position, following
the commanded artistic principles (Fig. 5).

b) Heading Estimation: Accurate heading angle estimation is
vital for the UAV to follow the correct shot type (front,
back, left, right). As discussed in [36], human 2D pose
estimation has been widely studied [39], [40], but 3D heading
direction cannot be trivially recovered directly from 2D
points because depth remains undefined. Therefore, we use
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Fig. 3. Vision sub-system. We detect and track the actor’s bounding box,
estimate its heading, and project its pose to world coordinates. A Kalman
Filter predicts the actor’s forecasted trajectory &q.



—> Network output

& ——> GT Label

Unlabeled
sequence

2 R
| ! daali
m c = * Labeled loss

(mean square error)

Depthwise Conv m Depthwise Conv
m 3 Conv m stride=1 stride=2

Fig. 4. Heading detection network structure, from [36]. We leverage
temporal continuity between frames to train a heading direction regressor
with a small labeled dataset.

the model architecture from [36] (Fig. 4), which takes as
input a bounding box image, and outputs the cosine and sine
values of the heading angle. This network uses a double loss
during training, summing both errors in heading direction
and temporal continuity. The latter loss is particularly useful
to train the regressor on small datasets, following a semi-
supervised approach.

¢) Ray-casting: Given the actor’s bounding box and heading
estimate on image space, we project the center-bottom of the
bounding box onto the world’s ground plane and transform
the actor’s heading using the camera’s state estimation to
obtain the actor’s position and heading in world coordinates.

d) Motion Forecasting: The current actor pose updates a
Kalman Filter (KF) to forecast the actor’s trajectory &,. We
use separate KF models for people and vehicle dynamics.

B. Mapping sub-system

As explained in Section II, the motion planner uses signed
distance values M in the optimization cost functions. The role
of the mapping is to register LIDAR points from the onboard
sensor, update the occupancy grid G, and incrementally update
the signed distance M:

a) LiDAR registration: The laser at the bottom of the aircraft
outputs roughly 300, 000 points per second. We register points
in world coordinates using a rigid body transform between
sensor and UAV, plus the UAV’s state estimation, which fuses
GPS, barometer, internal IMUs and accelerometers.

b) Occupancy grid G update: We use a grid size of 250x 250 x
100m, with 1m square voxels that store an 8-bit integer value
between 0—255 (free - occupied) as the occupancy probability.
All cells are initialized with 127 (unknown). Algorithm 1
covers the grid update process. The inputs to the algorithm
are the sensor position Pgensor, the LIDAR point ppint, and
a flag is_hit that indicates whether the point is a hit or miss.
The endpoint voxel of a hit will be updated with log-odds
value [,.., and all cells in between sensor and endpoint will
be updated by subtracting value [,... We assume that all
misses are returned as points at the maximum sensor range,
and in this case only the cells between endpoint and sensor
are updated. Voxel state changes to occupied or free are stored

Algorithm 1: Update G (psensors Dpoint, tS-hit)
1 Initialize Vchange — {1 ychange _

occ ree

2 Initialize lfee, loce > log—odds updates
3 for each voxel v between Dgensor and ppoint do

4 V4=V = lpree;
5 if v was occupied or unknown and now is free
then
6 Append(v, ch:e"ge);
7 for each unknown neighbor v, of v do
s | Append(v, ., V,Shamse)
9 end
10 end
11 if v is the endpoint and is_hit is true then
12 V4 U+ loees
13 if v was free or unknown and now is occupied
then
14 | Append(v, Viienae)
15 end
16 end
17 end
18 return V/change yschange

occ free

in lists V.<hanoe and VE""9¢ State changes are used for the

signed distance update.

¢) Incremental distance transform M update: We use the list
of voxel state changes as input to an algorithm, modified from
[29], that calculates an incremental truncated signed distance
transform (iTSDT), stored in M. The original algorithm
described by [29] initializes all voxels in M as free, and
as voxel changes arrive in sets V,<9"9¢ and Vfrh:e”ge, it
incrementally updates the distance of each free voxel to
the closest occupied voxel using an efficient wavefront
expansion technique within some limit (therefore truncated).
Our problem, however, requires a signed version of the DT,
where the inside and outside of obstacles must be identified
and given opposite signs. The concept of regions inside
and outside of obstacles cannot be captured by the original
algorithm, which provides only a iTDT (no sign). Therefore,
we introduced two important modifications:

i) Using obstacle borders. We define a border voxel vyorder
as any voxel that is either a direct hit from the LiDAR (lines
13—15 of Alg. 1), or as any unknown voxel that is a neighbor
of a free voxel (lines 5 — 9 of Alg. 1). In other words, the
set Viporder Will represent all cells that separate the known
free space from unknown space in the map, whether this
unknown space is part of cells inside an obstacle or cells that
are actually free but just have not yet been cleared by the
LiDAR. Differently from [29], our M uses updates V,change
and V"9 to maintain the distance of any voxel to its

ree
closest border instead of the distance to the closest hit.

ii) Querying G for the sign. We query the value of G to
attribute the sign of the iTSDT, marking free voxels as
positive, and unknown or occupied voxels as negative.
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Fig. 5.  Shot parameters for shot quality cost function, adapted from [11]:

a) shot scale p corresponds to the size of the projection of the actor on the

screen; b) line of action angle ¢,.; € [0, 27]; ¢) screen position of the actor
projection spg, spy € [0, 1]; d) tilt angle 0,..; € [—m, 7]

C. Planning sub-system

We want trajectories which are smooth, capture high quality
viewpoints, avoid occlusion and are safe. Given the real-
time nature of our problem, we desire fast convergence to
locally optimal solutions rather than globally optimality taking
a long time to obtain a solution. A popular approach is
to cast the problem as an unconstrained optimization and
apply covariant gradient descent [41]. This is a quasi-Newton
approach where some of the objectives have analytic Hessians
that are easy to invert and are well-conditioned. Hence such
methods exhibit fast convergence while being stable and
computationally inexpensive.

For this implementation, we use a waypoint parameterization
of trajectories, i.e., & € R™*3, The heading dimension (#)
is set to always point the drone from &, () towards &,(t). We
design a set of differentiable cost functions as follows:

a) Smoothness: We measure smoothness as the cumulative
derivatives of the trajectory. Let D be a discrete difference
operator. The smoothness cost is:

11 ty dmaz p )
Jamootn (§0) = -5 | D an(D7g())*dt
feJo =
d=1
1 T "
~ WTT(&] Asmoothgq + 25(1 bsmooth + Csmooth)

(2)
where ., is a weight for different orders, and d,q; is
the number of orders. We set «,, = 1,d,nqe = 3. Note
that smoothness is a quadratic objective where the Hessian
Agmooth 18 analytic.

b) Shot quality: Written in a quadratic form, shot quality
measures the average squared distance between &, and an
ideal trajectory &gspo¢ that only considers positioning via cin-
ematography parameters. &sp0¢ can be computed analytically:
for each point &,(t) in the actor motion prediction, the ideal
drone position lies on a sphere centered at &, (¢) with radius p
defined by the shot scale, relative yaw angle ¢,..; and relative
tilt angle 6,..; (Fig. 5):

co$(Vq + Prer)sin(Orer)
Eshot (1) = Ea(t) + p | sin(pa + dret)cos(Ore) | (3)
c08(0rer)

11 [
Jsnot (€q5€a) = 75/ |€q(t) — fshot(fa(t))Hth
1 f 0 @
~ mTr(quAshotfq + 28] bsnot + Cshot)

¢) Safety: Given the online map G, we calculate the TSDT
M :R3 — R as described in Section IV-B. We adopt a cost
function from [41] that penalizes proximity to obstacles:
~M(p) + Leons M(p) <0

26(1)1)3 (M(p) - 6obs)2 0< M(p) S €obs (5)
0 otherwise

c(p) =

We can then define the safety cost function [41]:

ot (€02 M) = [ ete(t) ds(det ©®

dt

ty

d) Occlusion avoidance: Even though the concept of occlu-
sion is binary, i.e, we either have or don’t have visibility of the
actor, a major contribution of our past work [8] was defining
a differentiable cost that expresses a viewpoint’s occlusion
intensity among arbitrary obstacle shapes. Mathematically,
we define occlusion as the integral of the TSDT cost ¢ over
a 2D manifold connecting both trajectories £, and &,. The
manifold is built by connecting each drone-actor position pair
in time using the path p(7) = 7&,(t) + (1 — 7)€ (&a)-

Joce (§q+ €as M)
= [7 ([, ctotrn] |0t

Our objective is to minimize the total cost function J (&,)
(Eq. 1). We do so by covariant gradient descent, using the
gradient of the cost function VJ(&;), and an analytic approx-
imation of the Hessian V2J(&,) = (Asmooth + M Ashot):

d
) s
™

1
5; = gq - ;(Asmooth + AlAshot)ilvj(gq) (8)

This step is repeated till convergence. We follow conventional
stopping criteria for descent algorithms, and limit the max-
imum number of iterations. Note that we only perform the
matrix inversion once, outside of the main optimization loop,
rendering good convergence rates [8]. We use the current
trajectory as initialization for the next planning problem.

V. EXPERIMENTS
A. Experimental setup

Our platform is a DJI M210 drone, shown in Figure 6. All
processing is done with a NVIDIA Jetson TX2, with 8GB of
RAM and 6 CPU cores. An independently controlled gimbal
DJI Zenmuse X4S records high-resolution images. Our laser
sensor is a Velodyne Puck VLP-16 Lite, with £15° vertical
field of view and 100m max range.



Fig. 6. System hardware: DJI M210 drone, Nvidia TX2 computer, VLP16
LiDAR and Zenmuse X4S camera gimbal.

B. Field test results

a) Visual actor localization: We validate the precision of
our pose and heading estimation modules in two experiments
where the drone hovers and visually tracks the actor. First, the
actor walks between two points over a straight line, and we
compare the estimated and ground truth path lengths. Second,
the actor walks on a circle at the center of a football field,
and we verify the errors in estimated positioning and heading
direction. Fig. 8 summarizes our findings.

b) Integrated field experiments: We test the real-time perfor-
mance of our integrated system in several field test experi-
ments. We use our algorithms in unknown and unstructured
environments outdoors, following different types of shots and
tracking different types of actors (people and bicycles) at both
low and high speeds in unscripted scenes. Fig. 9 summarizes
the most representative shots, and the supplementary video
(https://youtu.be/ZE9MnCVmumc) shows the final footages along
with visualizations of point clouds and of the online map.

c) System statistics: We summarize runtime statistics in
Table II, and discuss online mapping details in Fig. 7. While
the vision networks takes up a large part of the system’s
RAM, CPU usage is fairly balanced accross systems.

C. Performance comparison with full information knowledge

An important hypothesis behind our system is that we can
operate with insignificant loss in performance using noisy
actor localization and a partially known maps. We compare
our system with three assumptions from previous works:

a) Ground-truth obstacles vs. online map: We compare
average planning costs between results from a real-life test
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Fig. 7. Incremental distance transform compute time over flight time. The
first operations take significantly more time because of our map initialization
scheme where all cells are initially considered as unknown instead of free.
After the first minutes of flight incremental mapping is significantly faster.

TABLE I
SYSTEM STATISTICS

System Module '(l?lll):ia d (%) RAM (MB) Runtime (ms)
Detection 57 2160 145
Vision Tracking 24 25 14.4
Heading 24 1768 139
KF 8 80 0.207
Grid 22 48 36.8
Mapping | TSDF 91 810 100-6000
LiDAR 24 9 NA
Planning | Planner 98 789 198
DJI SDK 89 40 NA
TABLE III

PERFORMANCE COMPARISONS
Avg. plan

Planning Condition time(ms) Avg. cost Median cost
Ground-truth map 32.1 0.1022 0.0603
Online map 69.0 0.1102 0.0825
Ground-truth actor 36.5 0.0539 0.0475
Noise in actor 30.2 0.1276 0.0953

where the planner operated while mapping the environment in
real time with planning results with the same actor trajectory
but with full knowledge of the map beforehand. Results are
averaged over 140 s of flight and approximately 700 planning
problems. Table III shows a small increase in average planning
costs, and Fig 10a shows that qualitatively both trajectories
differ minimally. The planning time, however, doubles in the
online mapping case due to extra load on CPU.

b) Ground-truth actor versus noisy estimate: We compare the
performance between simulated flights where the planner has
full knowledge of the actor’s position versus artificially noisy
estimates with 1m amplitude. Results are also averaged over
140 s of flight and approximately 700 planning problems, and
are displayed on Table III. The large cost difference is due
to the shot quality cost, which relies on the actor’s position
forecast and is severely penalized by the noise. However,
if compared with the actor’s ground-truth trajectory, the
difference in cost would be significantly smaller, as seen
by the proximity of both final trajectories in Fig 10b. These
results offer insight on the importance of our smoothness cost
function when handling the noisy visual actor localization.

Route 2

- directian
30}, .
250 A O\
c 20 N 8
‘;15 . N0 . Estimated -

X >
SO S P Estimated
SN Endfpt
NN\ -
AV

945-40-35-30-25-20-15-10 =5 0
X (m)

a)

Fig. 8. Pose and heading estimation results. a) Actor walks on a straight
line from points A-B-A. Ground-truth trajectory length is 40.6m, while
the estimated motion length is 42.3m. b) The actor walks along a circle.
Ground-truth diameter is 18.3m, while the estimated diameter from ray
casting is 18.7m. Heading estimation appears tangential to the ground circle.



Third-person view

Point cloud Occupancy grid

Fig. 9. Field results: a) side shot following biker, b) circling shot around dancer, c) side shot following runner. The UAV trajectory (red) tracks the actor’s
forecasted motion (blue), and stays safe while avoiding occlusions from obstacles. We display accumulated point clouds of LiDAR hits and the occupancy
grid. Note that LiDAR registration is noisy close to the pole in row (c) due to large electromagnetic interference of wires with the UAV’s compass.

(b)

Fig. 10. Performance comparisons. a) Planning with full knowledge of the
map (yellow) versus with online mapping (red), displayed over ground truth
map grid. Online map trajectory is less smooth due to a imperfect LIDAR
registration and new obstacle discoveries as flight progresses. b) Planning
with perfect ground truth of actor’s location versus noisy actor estimate with
artificial noise of 1m amplitude. The planner is able to handle noisy actor
localization well due to smoothness cost terms, with final trajectory similar
to ground-truth case.

c) Height map assumption vs. 3D map: As seen in Fig. 9c,
our current system is capable of avoiding unstructured
obstacles in 3D environments such as wires and poles. This
capability is a significant improvement over our previous
work [8], which used a height map assumption.

VI. CONCLUSION

We present a complete system for autonomous aerial cine-
matography that can localize and track actors in unknown
and unstructured environments with onboard computing in
real time. Our platform uses a monocular visual input to
localize the actor’s position, and a custom-trained network to
estimate the actor’s heading direction. Additionally, it maps
the world using a LiDAR and incrementally updates a signed
distance map. Both of these are used by a camera trajectory
planner that produces smooth and artistic trajectories while
avoiding obstacles and occlusions. We evaluate the system

extensively in different real-world tasks with multiple shot
types and varying terrains.

We are actively working on a number of directions based
on lessons learned from field trials. Our current approach
assumes a static environment. Even though the our mapping
can tolerate motion, a principled approach would track moving
objects and forecast their motion. The TSDT is expensive
to maintain because whenever unknown space is cleared, a
large update is computed. We are looking into a just-in-time
update that processes only the subset of the map queried by
the planner, which is often quite small.

Currently, we do not close the loop between the image
captured and the model used by the planner. Identifying
model errors, such as actor forecasting or camera calibration,
in an online fashion is a challenging next step. The system
may also lose the actor due to tracking failures or sudden
course changes. An exploration behavior to reacquire the
actor is essential for robustness.
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