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Abstract— Visual odometry is an essential problem for mobile
robots. Traditional methods for solving VO mostly utilize
geometric optimization. While capable of achieving high ac-
curacy, these methods require accurate sensor calibration and
complicated parameter tuning to work well in practice. With
the rise of deep learning, there has been increased interest in
the end-to-end, learning-based methods for VO, which have
the potential to improve robustness. However, learning-based
methods for VO so far are less accurate than geometric
methods. We argue that one of the main issues is that the
current ego-motion estimation task is different from other
problems where deep learning has been successful such as
object detection. We define a novel cost function for learning-
based VO considering the mathematical properties of the
group homomorphism. In addition to the standard L2 loss,
we incorporate losses based on the identity, inverse and closure
properties of SE(3) rigid motion. Furthermore, we propose to
reduce the VO drift by estimating the drivable regions using
semantic segmentation and incorporate this information into a
pose graph optimization. Experiments on KITTI datasets show
that the novel cost function can improve ego-motion estimation
compared to the state-of-the-art and the drivable region-based
correction further reduces the VO drift.

I. INTRODUCTION

Visual odometry (VO) takes a sequence of consecutive
images as input and estimates the motion of a moving robot
(ego-motion). This problem was first defined by Nister et
al. [1] in 2004, but related research can be traced back
almost 40 years [2]. It is one of the main methods used
in robot localization and state estimation. Most of the ex-
isting methods estimate the ego-motion (R, t) by geometric
optimization of reprojection error [3] or photometric error
[4]. These approaches require accurate sensor calibration and
manual parameter tuning to work in different environments.

Recently, learning-based methods which directly estimate
the ego-motion have become active research areas. Con-
volutional Neural Networks (CNNs) [5], either supervised
or unsupervised, are most widely used to learn a mapping
function from image pairs to ego-motion. In supervised
methods [6], the ground-truth ego-motion is directly used
to compute a training loss, while unsupervised methods
[7] usually estimate both ego-motion and image depth to
formulate an image reprojection-based loss.
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Fig. 1. Our training losses. We take the mathematical properties of
homomorphism mapping into consideration and formulate three losses:
identity loss, inverse loss and closure loss.

Most learning-based methods model the VO problem as
a regression from pairs of images to rigid motions. Cur-
rently, the accuracy of these methods is worse compared
to geometry-based approaches. We argue that this is partly
because these approaches do not fully model the structure of
the VO problem. In particular, they do not explicitly model
certain properties that the VO mapping should have, such as
the fact that for a given pair of images, and the same pair of
images in reverse order, the estimated motions should be the
inverse of each other. This makes the problem ill-defined.

In this paper, we propose to redefine the task by in-
corporating the intuition that the mapping should respect
the mathematical group property of the rigid motion, and
moreover, for operations on the input image pair, the output
motion should change in a way that is consistent with the
nature of the operation as shown in Fig. 1. That is, the
mapping should have the properties of a homomorphism.
Here, we focus on preserving the group properties of closure,
identity element, and inverse element. For example, when
reversing an image pair, the requirement that the predicted
motion should be the inverse corresponds to preserving
the inverse element property. We implement this idea by
incorporating novel losses into the training process of an ego-
motion estimation network, as detailed in Sec. III. While we
focus on the supervised setting, our method can be used for
unsupervised settings as well.

Another problem with frame-to-frame approaches is that
they are subject to long-term drifting; as an additional
contribution, we propose a novel method to address this issue



in driving scenarios, based on the idea that the estimated
poses should follow a plausible path relative to the road
on which the vehicle is travelling; we implement this using
image-based semantic segmentation and graph optimization.

In this paper, we study 1) whether the CNNs can learn
the ego-motion estimation; 2) how to define the suitable
loss function for CNN training based on the properties of
homomorphisms; 3) how to reduce the drift of the estimated
VO; and 4) the empirical performance of our proposed
improvements with real data. Thus, our contributions are as
follows:

1) We empirically show that the CNNs with an L2 loss
do not learn a mapping that respects the properties of
ego-motion.

2) We propose novel loss functions for CNNs based
ego-motion estimation considering the mathematical
properties of the homomorphism mapping.

3) We propose a pose graph optimization method to im-
prove the ego-motion result considering the vehicle’s
drivable regions.

4) We show that with our proposed improvements, we
can outperform the state of the art on learning-based
monocular VO in the well-known KITTI benchmark.

The rest of this paper is organized as follows: Sec. II reviews
the related work. Sec. III describes our approach, and Sec. IV
evaluates our approach on the KITTI dataset. We conclude
and suggest future work in Sec. V.

II. RELATED WORK

The first learning-based ego-motion estimation method is
proposed by Roberts et al. [8], who formulated the problem
as a classification task solved by K-Nearest Neighbors.
However, ego-motion estimation is not a classification but
a regression problem in nature. Guizilini et al. [9] presented
a semi-parametric method based on Gaussian Processes and
optical flow input to solve the regression problem. Costante
et al. [10] utilized optical-flow to predict the ego-motion
with deep CNNs. Pillai et al. [11] further combined it with
a GPS/INS system. For the methods based on optical flow,
their performance depends on the accuracy of the input and
they discard much information in the raw images. Costante
et al. [12] proposed to jointly estimated a low dimensional
representation of optical flow and ego-motion to make the
ego-motion estimation more robust to optical flow change.
Wang et al. [6], [13] used raw images as the input and also
considered sequential information by using recurrent CNNs.
This method also exploited some properties of ego-motion,
while we directly use the mathematical constraints for the
loss functions. Iyer et al. [14] proposed a self-supervised
method where the ego-motion estimation is learned from a
geometry-based method, and which enforces geometric con-
sistency of the trajectory. Our homomorphism loss is similar
to this method, but we consider the identity, inverse and
closure properties of the homomorphism mapping, whereas
this method considers only the closure property.

Meanwhile, many unsupervised methods are proposed to
make the training process easier. Zhou et al. [7] proposed an

{Tt ∈ SE(3)} t = tn, tn+1, . . . , tm−1

{It ∈ Rw*h*c}

t

{Pt ∈ SE(3)} t = tn, tn+1, . . . , tm

Pn+1

Pn Pm−1
Pm

vertex

edge

. . .Tn

Graph Optimization

Learning − based VO

Fig. 2. System structure. The estimated ego-motion and road segmentation
information are combined to improve the ego-motion accuracy by graph
optimization.

unsupervised method to predict image depth as well as ego-
motion using two networks, then compute the re-projected
image residual as the loss function. Mahiourian et al. [15]
added an additional 3D geometric loss based on [7] and
achieved better performance. Li et al. [16] adopted binocular
images to obtain more supervised information during training
but used only monocular images during testing. Zhan et al.
[17] also used binocular images to train the network, and
besides, they utilized a dense feature reconstruction loss as
supervisory information in addition to image reconstruction
loss, in order to relax the Lambertian scene assumption. Yin
et al. [18] considered dynamic objects in the environment and
combined ResFlowNet with ego-motion and depth estimation
networks to get better performance on all tasks. Parisotto et
al. [19] proposed a learning-based SLAM method which not
only estimated the ego-motion but also considered the global
optimization. In the field of drift correction, Peretroukhin et
al. [20] proposed a pose correction method to correct the
ego-motion estimated by a geometry-based method using
graph optimization method. While our method is to correct
a learning-based method by semantic information.

III. METHOD

In this section, we first introduce and motivate our pro-
posal for training ego-estimation network based on the
properties of homomorphisms. We then present our drift cor-
rection method. An overview of our framework is described
in Algorithm 1 and Fig. 2.

A. Learning-based Ego-motion Estimation as a Homomor-
phism

Learning-based methods formulate ego-motion estimation
as a regression problem by modeling the many-to-one map-
ping from two consecutive images to ego-motion

F : R2c×w×h→ se(3) (1)



Algorithm 1: Ego-motion Estimation and Correction
Input: Supervised training dataset: monocular image pairs and

ego-motion {Îi+1
i , T̂i+1

i } i = 0, ...,n; image
pairs {I j+1

j }, i = 0, ...,m for testing
Output: Corresponding ego-motion with {I j+1

j }
Train the neural network with the training dataset to fit the

function Eq. 2 with the loss function Eq. 12
for ti = 0 to m do

Estimate the ego-motion Tti with the trained neural network
as described in Section III-A.3

Detect the road region in image Iti by semantic segmentation
of the road

Fit the road edges with second order polynomial equations fl
and fr

if ti > minimum sequence length(tl) then
Optimize the egomotion T j+1

j j = ti− tl , ..., ti as
described in Eq. 20

end
end
return T j+1

j j = 0, ...,m

The domain of the mapping has dimensionality 2c×w×h,
where c is the number of channels in each image and w, h
are the width and height of the input image respectively.

However, the mapping is ill-defined as the constraints of
ego-motion are not considered. Instead, we propose to rede-
fine the learning-based ego-motion estimation formulation:

Learning-based ego-motion estimation is the pro-
cess of training a model to find the mapping from
consecutive images to the ego-motion, if and only
if the mapping is a homomorphism.

1) Mathematical Losses: As described in Section III-A,
the problem is formulated as a regression problem. The
mapping can be denoted as the function

{t,r}= F(In
m;P) (2)

where F is the neural network with parameters P, In
m =

{Im,In} are the two consecutive images, {t,r} ∈ se(3) are
translation and rotation vectors respectively. We consider
consecutive image pairs as a general set {I}, and define an
operation ⊗ as

In
m = It

m⊗ In
t (3)

Then the general set {I}, together with the defined operation
is a general group {I,⊗}. We can know that the general
group satisfies the four conditions: closure, associativity,
identity and invertibility. We use the term general group
instead of group because the operation ⊗ can only be used
on consecutive elements in the set. We denote the identity
element of the group as Iiden = {In,In}= In

n and the inverse
element of In

m as −In
m = {In, Im}= Im

n .
Taking the properties of ego-motion estimation into con-

sideration, the mapping from {I,⊗} to ego-motion group
SE(3) is a homomorphism

exp(F(In
m⊗ It

n)) = exp(F(In
m))∗ exp(F(It

n)) (4)

where T = exp({t,r}) is the Lie group function which maps
a motion vector {t,r} ∈ se(3) to a motion matrix T ∈ SE(3)
[21].

We can get three constraints based on the homomorphism:

F(Iiden) = {0,0} (5)

exp(F(−In
m))∗ exp(F(In

m)) = E (6)

exp(F(In
m))∗ exp(F(It

n)) = exp(F(It
m)) (7)

where E is the identity matrix in SE(3).
Taking the above properties into consideration, we can

formulate three corresponding losses: identity loss, inverse
loss and closure loss. We first introduce the commonly used
L2 loss [6]

L2 =
n

∑
i=1
‖F(Ii+1

i )−{tgi,rgi}‖2 ·ω (8)

where {tg,rg} are the ground truth translation vector and ω

is the weights vector.
The identity loss in Eq. 9 indicates that for two identical

images, the output translation and rotation should be zero.

Liden =
n

∑
i=1
‖F(Ii

i )‖2 ·ω (9)

The inverse loss encodes the constraint that when the order
of the two input images are reversed, the output ego-motion
should be accordingly inverse:

Linv =
n−1

∑
i=1
‖ log(exp(F(Ii+1

i ))∗ exp(Fi
i+1))‖2 ·ω (10)

where {t,r}= log(T) is the function which maps a motion
matrix T ∈ SE(3) to a motion vector {t,r} ∈ se(3).

The closure loss represents that given a triplet of consecu-
tive images, the composition of motions corresponding to the
first two images and the last two images should be consistent
with the motion between the first and last image:

Lclo =
n−2

∑
i=1
‖ log(li,i+1,i+2)‖2 ·ω (11)

li,i+1,i+2 = exp(F(Ii+1
i ))∗ exp(F(Ii+2

i+1 ))∗ exp(F(Ii+2
i ))−1

The total loss is thus

L = L2 +Liden +Linv +Lclo (12)

We simplely set the weight of each loss to 1 though bet-
ter performance may be achieved by adjusting the weight
parameters.

2) Learning Setup: The network structure is adapted from
PoseNet in SFM Learner [7]. We modify the convolutional
layer to use dilated convolutions, to increase the receptive
field. The input is the downsampled grayscale images. The
output is normalized motion vector

{r, t}= ({r, t}−{r̄, t̄})/σ({r, t}) (13)

where {r̄, t̄} and σ({r, t}) are the mean values and standard
errors of a motion vector. The weight parameters ω of the
different losses are simply set as (1,1,1,1,1,1,1).



(a) Correct Estimated Ego-motion (b) Wrong Estimated ego-motion

Fig. 3. We projected a sequence of ego-position calculated by estimated
ego-motion onto the beginning image of the sequence. This figure shows
different conditions when the ego-motion is calculated correct (Fig. 3(a)) or
wrong (Fig. 3(b)).
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Fig. 4. This figure presents the definition of the graph for ego-motion
correction. The vertices are the poses Pt , and we define three kinds of edge
to correct the ego-motion.

3) Estimation Method: In the training phase, we add
the relative loss function (Eq. 12) to make the estimated
mapping maintain the homomorphism properties. This not
only improves the accuracy of the estimation, but also
provides an indicator which shows how much the estimated
result can be trusted, as follows. We build a pose graph where
each edge ei j encodes a predicted ego-motion T j

i between the
poses Pi and P j of two images:

ei j = ‖PiT j
i P−1

j ‖2 (14)

Pt ,Pt−1,Pt−2 = argmin ∑
i, j∈t,t−1,t−2

ei j (15)

Here we use the same information matrix for each estimated
pose, as we do not have prior information. For each times-
tamp, the final poses and ego-motion are inferred by graph
optimization, and the final loss can be used as a confidence
measure in the accuracy of our estimations.

B. Ego-motion Path Correction

The ego-motion estimation in the last section is a com-
pletely open loop estimation whose performance is heavily
dependent on the quality of the training procedure, and
may have drift in the long term. Therefore, we propose to
combine drivable region detection and ego-motion estimation
to reduce the drift as post-processing. These two tasks are
connected by the robot’s localization: one predicts reasonable
locations of the robot in the future, and the other calculates
the current location. By incorporating temporal context, the
two approaches can be combined to boost accuracy.

As we have estimated the ego-motions {Tt+1
t ∈ SE(3)} t =

tn, tn+1, ..., tm, we can calculate the robot poses at each time
by Pt+1 = Pt ∗Tt+1

t .

TABLE I
TESTING RESULTS OF DIFFERENT TRAINING METHODS

sequence Forward Training Cycle Training Group Training

09 R(deg/m) 0.0289 0.0177 0.0151
09 t(%) 16.52 8.62 8.04

As shown in Fig. 3, we project the sub segment of each
estimated ego-path {Pt ∈ SE(3)} t = tn, tn+1, ..., tm onto each
image It=n where the position of the robot is visible by

ut = KP−1
n Pt (16)

where the ut are the 2D positions in image space of each
robot pose. At the same time, we detect the drivable road
region on the pixel level by semantic segmentation with the
pre-trained MultiNet architecture [22]. Then, the left and
right edges of the road were fit with second-order polynomial
curves fl and fr, such that for each f, f(u) = 0 for points on
the curve, f(u) < 0 for points to the left of the curve, and
f(u)> 0 for points to the right of the curve. This is depicted
in Fig. 3.

We assume that in the usual case, the vehicle will stay
on the road. This method can correct the drift when the
estimated ego-motion drift make the robot off-road. The
problem is formulated as a pose graph optimization, as
shown in Fig. 4. The graph vertices represent the robot poses
{Pt} t = tn, ..., tm, and we define three kinds of edges: one
unary edge and two kinds of binary edges. The unary edges
encode the constraint that the projected path points should
be on the road region:

et = Lrelu(−fl(ut)))+Lrelu(fr(ut))) (17)

Here we apply a ReLU nonlinearity, as the loss should be
zero when the vehicle is on the road for the unary edge.
When realization, the width of the robot should also be
considered to decide whether it is off road.

The first binary edge prevents the optimized poses from
drifting too far from the original poses:

et,t+1 = ‖log(P−1
t+1PtTt+1

t )‖2 (18)

The other binary edge encodes the notion that the vehicle’s
pose should stay at approximately the similar distance from
the road edges for consequent timestamps:

e′t,t+1 = ‖fl(ut)− fl(ut+1)‖2 +‖fr(ut)− fr(ut+1)‖2 (19)

We can get the corrected ego-motion after optimization over
poses by

{Pt} t=tn,...,tm = argmin
Pt

tm

∑
t=tn

et + et,t+1 + e′t,t+1 (20)

where the minimization is performed by g2o [23] with the
Levenberg-Marquadt algorithm.
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(b) Evaluated by KITTI Metric [24]

Fig. 5. Training loss of forward training and group traing are shown in Fig.
5(a), they both converge. Fig. 5(b) shows the evaluation result by KITTI
evaluation metrics on training dataset. Group training means training with
the proposed loss Eq. 12 and forward training represents training with L2
loss Eq. 8. Backward testing means testing the trained model by reversed
image pairs.

IV. EXPERIMENTS

Four experiments were conducted to show the performance
of the proposed method. First, we verified whether CNNs are
sufficient for learning ego-motion estimation, and whether
the L2 loss alone can learn the ego-motion mapping. This is
an implicit assumption for most learning-based ego-motion
estimation research. Second, we verified the efficiency of
the proposed learning objective by evaluating on the testing
dataset with different learned models. Third, the result is
compared with other state-of-the-art methods. Finally, an
experiment was performed to verify whether our drivable
region-based method can further improve ego-motion esti-
mation.

We evaluated the methods on the KITTI dataset [24],
based on the metric of average rotation and translation error
of each fixed distance segment [24]. The training data is split
into multiple 3-frame sequences, as our model calculates the
closure loss based on three consecutive images. The data is
shuffled for training.

We implemented our method mostly in Python using the
PyTorch deep learning framework [25]. The learning rate was
set to 0.01 and the model was trained for 100 epochs. We
did not tune and reduce the learning rate during training. The
drivable region optimization is performed in C++ using g2o
[23], via a pybind11-based Python wrapper. When testing
on a laptop with Intel Core i7 and an NVIDIA GeForce
GTX 1060, the method takes approximately 6.3 ms and 423
MB GPU memory to estimate the ego-motion of each frame.
Road region-based correction takes about 70 ms for each
optimization.

A. Assumption Verification

Most current CNN prediction methods only utilize the
L2 loss to learn the ego-motion mapping, ignoring other
constraints described in Section III-A.3. So in our first
experiment, we verify whether CNN with L2 loss is enough
to solve the problem; under the definition described in Sec
III-A and whether neural networks are able to converge with
the homomorphism loss.
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(d) Testing Result

Fig. 6. This figure shows the testing result of different training patterns.
Fig. 6(a) shows the backward testing. Fig. 6(b) and Fig. 6(c) show the
optimized ego-motion result by Eq. 15. The comparison of final testing is
shown in Fig. 6(d).

We first trained the network with the KITTI sequence 00-
08 using the L2 loss. As shown in Fig. 5(a), the training
process converged. However, the backward testing error on
the training dataset (shown in Fig. 5(b)) did not decrease.
This means that the learned mapping with L2 loss is not
a correct ego-motion estimation mapping, as it does not
maintain the homomorphism property and unable to extend
to the inverse ego-motion when the input image pairs are
reversed. That means that the neural networks are not able
to know the mapping is homomorphism if we did not show
networks the backward data or homomorphism based loss.

Second, we must show that the neural networks are able to
converge with the homomorphism loss, because the conver-
gence is a necessary condition to use learning-based method
for ego-motion estimation. We train the same network on the
same dataset with the proposed training loss function (Eq.
12). As shown in Fig. 5, the training process converged. This
shows that the CNNs can fit the homomorphism mapping
from image pair to ego-motion.

As a conclusion, CNNs can fit the homomorphism ego-
motion mapping; we now evaluate how the homomorphism
loss can improve performance.

B. Loss function Efficiency

To show the influence of the proposed loss on the per-
formance of learning-based visual odometry, we trained the
same neural networks discussed in Sec. III-A.3 and used
the same training and test split (KITTI sequences 00-08 for
training, sequence 09 for testing). We compared the testing
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Fig. 7. We compare our path on KITTI 09 and 10 with the ground truth
and other methods. It shows that our path is much closer to the ground truth
compared to the baselines.

performance of the models trained under three conditions:
1) forward training: only L2 loss (Eq. 8), 2) cycle training:
L2 loss and inverse loss (Eq. 10), and 3) group training: L2
loss, inverse loss, identity loss (Eq. 9), and closure loss (Eq.
11). We tested the trained models on KITTI 09, with pairs
presented in both forward and backward order. The error
curves are shown in Fig. 6. For each model, we average the
testing error with the parameters from the last 30 training
epochs. The average errors are shown in Table I.

We can see that the models trained under the forward
condition only generalized well in forward testing (Fig.
6(d)) and did not generalize well to inverse testing (Fig.
6(a)). The models that used cycle or group training worked
well on both forward and backward testing. We also find
that the optimized testing results (by Eq. 15) of the cycle
model (Fig. 6(b)) and group model (Fig. 6(c)) performed
better than the unoptimized counterparts. Furthermore, the
cycle-trained model and group-trained model achieved better
forward-testing performance than the forward-trained model
(Fig. 6(d)), which shows that the proposed training method
can achieve better generalization for ego-motion estimation.
Similarly, group training obtained better performance than
cycle training, as shown in Table I.

C. Comparison with Other Methods

We compare the performance of our method with other
learning-based ego-motion estimation methods. The model
was trained on KITTI VO dataset sequence 00-08, and
tested on sequence 09 and 10, the same as [7], [17] and
[18]. Results are evaluated with the evaluation metric from
[24]. Table II and Fig. 7 summarize the results. To make it
clear, the results in Table II are the result without drivable
region based correction. The model is trained with ground
truth in absolute scale and tested with the dataset in similar
distribution, so our results do not need scale alignment.

As there is no absolute scale information in the unsuper-
vised methods (Zhou et al [7] and GeoNet [18]), their outputs
are scaled to align with the ground truth. From Table II, we
can see that our method outperforms their methods. While
unsupervised, Zhan et al. [17] can get the absolute scale
by using binocular images for training. The performance
of our approach is better by about 40%. As we can see,
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Fig. 8. Pose correction results. The green boxes are the ground truth
positions, the red boxes are the estimated positions, and the blue boxes are
the positions corrected by graph optimization. Fig. 8(a) is the correction
when the estimated pose too far away from the road edge. Fig. 8(b) is the
correction when the estimated poses are outside of the road. There is almost
no correction on Fig. 8(c) because the estimated poses are roughly correct.
Fig. 8(d) is the corrected path. We note the ground truth is only used for
visualization, not optimization.

while unsupervised methods offer the benefit of not requiring
ground truth information, their performance is comparatively
worse.

DeepVO [6] is the state-of-the-art supervised method,
which combines CNNs and RNNs. To make the results
comparable, we train our network with the same dataset as
DeepVO [6] (KITTI 00, 02, 08, 09) and test on KITTI 10. We
note that this is a smaller training dataset, which degrades our
performance slightly compared to the setting in our previous
experiment. Here, the translation and rotation error of our
approach are 8.08% and 0.0123 (deg/m), which outperforms
DeepVO, especially for rotation estimation. This shows the
benefits of our homomorphism-based losses, even without
using sequential information with an RNN.

Our performance is also better than LIBVISO2 [27] and
competitive with ORB-SLAM [3], two popular geometry-
based methods.

D. Drivable Region Based Correction

We show the performance of the correction method on
KITTI 09 in Fig. 8. We see that when the estimated ego-
motion has drift, and the drift moves the projected pose
outside of the road region (Fig. 8(b)) or the path does not
maintain a constant distance to the road edge (Fig. 8(a)),
our method can correct the poses. When the estimated ego-
motion is correct (Fig. 8(c)), the correction method does
not change the poses. As shown in Fig. 8(d), the correction
method improves the performance of ego-motion estimation.
The translation error is reduced from 8.04% to 6.92%.

V. CONCLUSION

In this paper, we redefined the learning-based ego-motion
estimation problem and proposed a novel objective for train-
ing the ego-motion estimation network. Our proposed inverse
loss, identity loss, and closure loss are used in the training
stage to put the functional mapping under the constraint



TABLE II
COMPARISON OF TRANSLATION AND ROTATION ERRORS FOR OUR METHOD VERSUS OTHER VISUAL ODOMETRY METHODS ON THE KITTI

BENCHMARK.

Seq

Zhan et al. DeepVO Zhou et al. GeoNet LIBVISO2 ORBSLAM Our Method(from [17]) (from [6]) (from [7]) (from [18]) (from [26]) (from [3])
Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot Trans Rot
(%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m)

09 11.92 0.0360 - - 17.84 0.0678 26.93 0.0954 4.04 0.0143 15.30 0.0026 8.04 0.0151
10 12.62 0.0343 8.11 0.0883 37.91 0.1778 24.69 0.0843 25.20 0.0388 3.68 0.0048 6.23 0.0097

Avg 12.27 0.0351 8.11 0.0883 28.88 0.1228 25.81 0.0899 14.62 0.0266 9.49 0.0037 7.14 0.0124

of group homomorphism. Experiments on KITTI showed
that the novel objective not only made the testing result
more accurate when the input is reversed, but also achieved
better performance overall conditions. Moreover, our training
method is also able to provide a confidence index for the
estimated ego-motion, which is essential for future fusion
and other tasks. We also explore correction of the estimated
ego-motion with optimization based on the intuition that
the estimated poses should be consistent with semantically-
segmented road observations, and our experiments show that
the correction can improve the estimated ego-motion.

In future work, our homomorphism-based losses could
be combined with more expressive CNN architectures in-
corporating sequential information, such as RNNs, or in
unsupervised scenarios. In addition, we would like to adapt
our ego-motion drift correction method to use other inputs
than road segmentation, which is only applicable in urban
driving; attractive options include trajectory prediction and
path planning methods.
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