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Abstract
Purpose – Robot localization technology has been widely studied for decades and a lot of remarkable approaches have been developed. However, in
practice, this technology has hardly been applied to common day-to-day deployment scenarios. The purpose of this paper is to present a novel approach
that focuses on improving the localization robustness in complicated environment.
Design/methodology/approach – The localization robustness is improved by dynamically switching the localization components (such as the
environmental camera, the laser range finder and the depth camera). As the components are highly heterogeneous, they are developed under the
robotic technology component (RTC) framework. This simplifies the developing process by increasing the potential for reusability and future expansion.
To realize this switching, the localization reliability for each component is modeled, and a configuration method for dynamically selecting dependable
components at run-time is presented.
Findings – The experimental results show that this approach significantly decreases robot lost situation in the complicated environment.
The robustness is further enhanced through the cooperation of heterogeneous localization components.
Originality/value – A multi-component automatic switching approach for robot localization system is developed and described in this paper.
The reliability of this system is proved to be a substantial improvement over single-component localization techniques.
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1. Introduction

Localization is one of the most fundamental and important

functions required by the autonomous mobile robot. As a result,

this subject has been widely studied for decades and many

different approaches have been developed. The essence of the

localization problem is to estimate the robot’s position and

orientation based on the data available from sensors that are

located either on the robot or somewhere in the environment.

Frequently used sensors are odometers, cameras (Davison et al.,

2007), microphone arrays (Huang et al., 1999), lasers

(Skrzypczynski, 2012; Teslić et al., 2010), depth cameras

(Biswas and Veloso, 2012), etc. The estimation process is

usually based on a probabilistic algorithm such as extended

Kalman filter (EKF) (Chenavier and Crowley, 1992;

Delalloche et al., 2001), Markov localization (Fox et al.,

1998), multiple hypothesis tracking (MHT) (Jensfelt and

Kristensen, 2001) and particle filter (Thrun et al., 2001).
Finding a robust and efficient algorithm is always a difficult

problem in localization research. This is due to the limitations of

the robot capability; the disturbance of the environment

uncertainty; as well as the explosion of computation complexity

when improving precision in large-scale problem. Even though

a lot of research has been conducted in this field, each of the

resulting localization methods is usually confined to a particular

environment or a specific application. For example, the method

based on the use of a camera requires good lighting conditions

(Drocourt et al., 1999; Rekleitis et al., 2006); another approach

depending on the laser sensor may fail in feature-less

environment such as a long corridor (Thrun et al., 2000); and

other methods based on the depth camera (Biswas and Veloso,

2012; Endres et al., 2012) cannot deal with the out-door tasks.

Thus, for purposes of applying the localization technique to a

complicated environment such as day-to-day life scenarios, this

paper propose an automatic switching approach among several

heterogeneous sensors coupled with localization methods to

improve the localization robustness.
For robot localization, it is very common to find several

sensors and techniques combined together to achieve better

quality. One of the most widely studied methods is one based on

the combination of a laser range finder (LRF) and an odometer

(Fox et al., 2001). Besides that, an integrated localization

system for mobile robots in underground environments, based

on a strap-down inertial measurement unit and a digital
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compass has also been developed for exploration and rescue

missions in coal mines and tunnels (Xiong et al., 2009). A multi-
sensor system combining data from infrared and ultrasonic

sensors for robot navigation has also been implemented for coal
mine rescue (Meng et al., 2011). There has also been some

research on the data fusion of multiple sensors mostly by means
of probabilistic methods (Chen et al., 2008).

However, few studies have considered utilizing modularized
methods to develop and manager various localization

components. Such components may be highly heterogeneous
both with regard to hardware platform and software
implementation. Take our system for example, the approach

based on the environmental camera is developed using Java in
Windows and implemented on an off-board computer whereas

the one based on the LRF sensor is realized with Cþþ in Linux
on an on-board computer, etc. There is little information

available in literature on how to combine these heterogeneous
localization methods for the purpose of improving the

localization robustness and reliability in a complicated
environment. Thus, this paper present a modularized

framework that attempts to improve the system extendibility
while also to reduce development complexity.

Considering the foregoing, a middleware technology is
introduced into the localization domain. It encapsulates
heterogeneous localization components into uniform

standardized components. Much research effort has been
expended on the middleware technology for heterogeneous

robotics system (Mohamed et al., 2009). Player framework
provides infrastructure, drivers and basic algorithms for mobile

robotic tasks (Collett et al., 2005); lime is a more specialized
library that is slanted more towards sensor networks

(Murphy et al., 2006); miro is an object-oriented middleware
for mobile robots based on the common object request broker

architecture (CORBA) (Utz et al., 2002). Another middleware
example based on CORBA is RT middleware (Ando et al., 2005,
2008), which provides the necessary services to enable

implementing robotic applications in distributed systems. We
argue that the middleware technology needs to offer the full

development lifecycle for robot software. That is, it needs to
have the capacity to provide not only the communication model

but also the interfaces for managing component states. With this
in mind, a distributed localization system using robot

technology component (RTC) is proposed.
The approach should be useful in the event that each

localization technique is individually unable to accomplish
the localization task. For example, our LRF-and-odometer-

based localization method always fails in the corridor.
Therefore, an extra environmental camera is installed on the
ceiling of the corridor. By means of the automatic switching

approach, the localization lost situation is significantly
decreased. Another advantage of this framework is that it

decouples different localization methods. Consequently, this
allows for relatively hassle-free incorporation of new methods

while still maintaining the old.
The paper is organized as follows. In Section 2, the robot and

localization components used in the experiment are presented.
Section 3 the modular developing framework based on RTC is

discussed. The problem of improving the localization
robustness by dynamically changing the connection of the

components is described in Section 4. The results of
the experiments are presented in Section 5. Also in Section 5
some comparisons are given to show the efficiency of our

method. Finally, conclusions are drawn in Section 6.

2. System architecture and localization
approaches

In this paper, the study is based on a distributed robotic

platform (Figure 1). One of the main advantages is that it is

convenient to expand the system with new localization modules

without any undue concern of implementation language or

environment. Also, the person responsible for one module can

be assured that the modification of his module will not affect the

others. This study makes use of a mobile robot equipped with a

“Kinect” depth camera and a “Hokuyo” LRF sensor. Besides

these, three environmental cameras are mounted on the ceiling.

One is located in the corridor, one in the indoor room, and

another in the outdoor square (Figure 2). To combine different

approaches to form a robust localization system, each module is

designed to report its localization performance based on its own

evaluation. This parameter – which reflects each module’s

confidence in its own localization accuracy – is herein referred

to as the localization reliability. For the reason that different

localization methods are implemented with different

algorithms, it is not likely that this confidence will be

evaluated in an identical way for each method. The various

detailed models are described below. Effort has been made to

make the reliability consistent with the localization accuracy.

The localization approach of each component is briefly

presented below with a particular focus on the modeling and

calculation of the reliability for each localization component.

2.1 Environmental camera based approach

The three web cameras are installed in different locations, in

order to effectively provide the positioning information. Since

this study does not focus on the concrete localization method,

but rather exploration of a method of improving the robustness

through the coordination of a variety of localization modules, we

employ a simple color tracking approach and assume that there

is no color interference during the experiments.
The camera is obliquely installed on the ceiling as Figure 3

shown. This means the accuracy decreases as the robot moves

far from the camera. The decrease is mainly due to two reasons.

One is the fact that perspective makes the distant robot harder to

recognize. The other is the recognition error in the algorithm.

For the convenience of deducing the reliability model, the

camera is well calibrated, in order to minimize the image

distortion.
As Figure 3 shows, let the installation angle of the camera

be a, the height be h, the vertical field angle be u, and the

pixel number in vertical direction be N. The field angle for

one pixel is given by:

u0 ¼ u

N
ð1Þ

P denotes a point on the image, and the vertical location is

represented as the angular coordinates w [ ½2u=2; u=2�.
The actual distance from camera is:

x ¼ tanðwþ aÞ · h ð2Þ

The actual length corresponding to one pixel at the point P is:

DðwÞ ¼ xD 2 x ¼ tanðwþ aþ u0Þ · h 2 tanðwþ aÞ · h

¼ sec2ðwþ aÞ
cot u0 2 tanðwþ aÞ · h

ð3Þ
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In practice, u0 is very small, and w þ a is smaller than p/2,

therefore cot u0 q tan(w þ a). It can be obtained:

DðwÞ < sec2ðwþ aÞ
cot u0

· h / sec2ðwþ aÞ ð4Þ

If the width of the color mark is denoted by w, the pixel

number of the color mark is given by:

nðwÞ ¼ w

D
ð5Þ

Intuitively, the recognition accuracy is proportional to the

color mark size in the image. It is defined as:

Figure 1 The architecture of the localization system based on modular development

Middleware technology
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Figure 3 The environmental camera installation example
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FðwÞ ¼ n

nmax

[ ½0; 1�; where nmax ¼ nðwmin Þ ¼ n 2
u

2

� �
ð6Þ

Supposing the recognition algorithm has an error of in ^k

pixels, the actual error at point P is:

EðwÞ ¼ k · D ð7Þ

The localization satisfaction S is inversely proportional to the

localization error:

SðwÞ ¼ 1

E þ 1
[ ½0; 1� ð8Þ

The localization reliability Rc is the product of the recognition

accuracy F and the satisfaction S:

RcðwÞ ¼ F · S ¼ n

nð2ðu=2ÞÞðkD þ 1Þ
<

w

nð2ðu=2ÞÞðkD2 þ DÞ
ð9Þ

From the actual parameters of the indoor camera, a ¼ 408,

h ¼ 2 m, N ¼ 900, u ¼ 588, the reliability Rc(w) is plotted in

Figure 4.

2.2 LRF sensor and odometer based approach

The LRF sensor is attached to the front of the mobile robot.

It provides the 2D point cloud data of the environment. We

employ the Monte Carlo localization algorithm, and implement

it on thebasis of the AMCLpackage (Gerkey,2011;Thrun et al.,

2005) of robot operating system (ROS). This package performs

the adaptive Monte Carlo localization approach for a robot

moving with a 2D map. It runs at the frequency of 10 Hz, and

has an average error of 15 cm in our environment. This

algorithm has been very comprehensively studied and widely

used, so in-depth analysis is omitted.
This approach takes in an offline built map and online laser

scan data, and outputs pose estimates and the covariance

matrix C, which is 6 by 6 in dimension:

C ¼ ðcijÞ6£6 i; j [ {x; y; z;a;b; g} ð10Þ

This covariance matrix C is consisted of the covariance between

six parameters, these are translation measured along x-, y-, z-

axis and the rotation also measured about the XYZ-axis. Since

our robot only moves on a 2D horizontal plane and there is a

compass accounting for the rotation about z-axis, the

localization error is defined as:

E ¼ ðcxx þ cyyÞ1=2 ð11Þ

where cxx and cyy are obtained from covariance matrix, and

denote the square of average positioning error along X- and Y-

axis, respectively.
In a manner similar to equation (8), the localization

reliability for the LRF sensor is defined as:

Rl ¼
1

E þ 1
[ ½0; 1� ð12Þ

2.3 Depth camera and odometer based approach

The depth camera used in this paper is the Kinect sensor from

Microsoftw. This device combines the information from a depth

sensor and a standard RGB camera. In this study, only the point

cloud generatedby the depth sensor is used. The data is matched

to an existing map using 3D normal-distributions transform

(NDT) algorithm (Magnusson, 2009). This algorithm first

applies the normal distribution model to represent the point

cloud in a compact way, and then applies standard numerical

optimization methods to maximize a likelihood function, so as to

minimize the distance between corresponding points.
The purpose of localization is to obtain the position and

orientation of the fresh point cloud with respect to the map

point cloud. In the 3D space, a transformation matrix can be

encoded to represent the 3D pose of a point cloud:

T ¼

cosacosb 2sinacosb sinb tx

sinacosgþ cosasinbsing cosacosgþ sinasinbsing 2cosbsing ty

sinacosg2 cosasinbsing cosacosg2 sinasinbsing cosbcosg tz

0 0 0 1

2
666664

3
777775

ð13Þ

Matrix T includes six independent variables: a, b, g, tx, ty, tz.

Wherein a, b, g represents the rotation around XYZ-axis, tx,

ty, tz represented the translation along the XYZ-axis.
Assuming that the existing map is represented as a point

cloud PCO ¼ {pco1; pco2; . . . ; pcon}, while the fresh point

cloud to be localized is represented as PC ¼ {pc1,pc2, . . . ,pcm}.

A spatial transformation function Trs(PC, T) can moves a

point cloud PC in space by the transformation matrix T, and

the transformed point cloud is expressed as

PCT ¼ {pct1,pct2, . . . ,pctm}, then:

PCT ¼ TrsðPC;T Þ ¼ T £ PC ð14Þ

We treat the point cloud of the map PCO as a probability

distribution D, assuming its probability distribution function

(PDF) is Fd and its distribution parameters are contained in the

matrix T. PCT would be a sample from PCO containing m

sample values. The likelihood function L(PC, T) is constructed

to represent the probability of this sample:

LðPC;T Þ ¼ Fdð pct1; pct2; . . . ; pctmjT Þ
¼ Pð pct1; pct2; . . . ; pctmÞ ¼

X
ð pci ;TÞ

ð15Þ

Figure 4 Reliability of environmental camera
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Since PC is known and constant, the only variable in likelihood

function L would be matrix T. The maximum value of likelihood

function L denotes that PC is most likely to be a sample from the

map point cloud PCO, which also means that the localization

error is minimal. To sum up, the best pose matrix T should be

the one that maximizes the likelihood function.
From the above we can learn that PDF is the key to

building likelihood function. A PDF is most suitable when it

can locally captures the structure of the surface points

robustly. The PDF chosen for this paper is expressed as:

PðxÞ ¼ 1

ð2pÞ3=2jSj1=2
exp 2

1

2
ðx 2 mÞT

S
21ðx 2 mÞ

� �
ð16Þ

where the mean vector m and covariance matrix S are the

characteristic parameters of the point cloud. The mean vector

indicates the position where the point cloud is located, while

the covariance matrix reflects overall distribution trend of

point cloud. We employ the Newton optimization algorithm

to search for the parameter T that optimizes L(T). The

odometer information was also recorded to initialize the

estimate for the optimization algorithm.
The robot location can be easily deduced from the resulting

translation matrix T. Furthermore, a localization score is

obtained by summing the probabilities of normal distributions

of all points PC with parameter T:

score ¼
Xm

i¼0

exp 2
ð pcti 2 mÞT

S
21ð pcti 2 mÞ

2

 !
ð17Þ

We conclude the correspondence between the score and

localization error E through a large number of experiments,

and establish a lookup table.
Same as above, the reliability for the depth camera is

represented as:

Rd ¼ 1

E þ 1
[ ½0; 1� ð18Þ

Since the global map is built offline, the probability distribution

D of the point cloud PCO can be calculated in advance. A lookup

table is built to accelerate the online localization process, so that

finding the corresponding normal distribution involves a simple

lookup in the grid of the NDT. Furthermore, the point cloud to

be located is rarefied to improve the efficiency. The point

number is reduced to 5,000, and the localization rate is

increased to 30 fps.

3. Modularization based on RTC

As mentioned above, the localization components are highly

heterogeneous with respect to platform such as operating

system, programming language and communication media.

Thus, the middleware is employed to generalize the

components into uniform standardized abstraction, which

enables the dynamic communication and cooperation between

any two of the modules. Figure 5 explains how middleware

transparentizes the hardware and software platform, and offers

standardized access to the robotic devices. Furthermore,

it simplifies the developing process in that everyone can focus

on developing his own module as long as compliance with the

same port configuration. Consequently, the system is easy to

modify and expand due to its highly modular characteristics.

We implement our system based on RT middleware owing

to its two functionalities:
1 The data ports and service ports for data exchange and

service invoking.
2 Component execution context for lifecycle management.

The ports are categorized as data ports and service ports. The

data port is responsible for the continuous exchange of data.

It performs in the data-flow style. Each component can have any

number of data InPorts and OutPorts. A data OutPort sends the

data to a corresponding InPort which receives the data. The

service port provides the command based communication. It is

executed in the client-server style. The component with a

service provider, offering a set of services, listens for requests

upon those services. The component with a service consumer,

desiring that a service be performed, sends a request to the

service provider via a connector. The service consumer and

provider are called as interface. The port does not provide any

functionality for data or command communication.

Communication between components is actually performed

by service interfaces. A port can associate functionally related

service interfaces of any number and any direction. This means

that one service port can provide multi-functionalities with

bidirectional communication. Figure 6(a) shows the simplified

UML model of the RT-component.
Figure 7 shows the seven components in our system. The five

localization components are encapsulated into a unified

form. They have one data OutPort for sending the robot

location (xt, yt, ut),which denotes the coordinates and orientation

in the world coordinates. Additionally they have one service port

with two “provided interfaces”, for the component’s current state

and the localization reliability, respectively. The mobile robot

component is designed with one data InPort, which receives the

location information, and one service interface, providing the

component’s state. The localization modules share unified port

properties, as a result, the mobile platform module has the

capacity to receive the data from any of the localization module

using the same piece of code. The configuration module has two

interfaces which are attached to a service port. It reads the

localization components’ reliability through the service port in

real-time, chooses the optimal one, and connects the localization

component to the robot component according to the situation.
As mentioned above, every component has its lifecycle, and

its current state. Figure 6(b) briefly explains the execution states

and their transitions. When a component is started, it is in the

ready state, in which it has completed the initialization process.

And then the component can be activated to execute the core

algorithm repeatedly. It remains in the active state until it is

deactivated or an error occurs. When an error occurs in the core

algorithm, a reset can be performed and the component will

shift back to the ready state (Table I).

4. Automatic switching algorithm

The configuration component acts like a supervisor in our

system. It mainly performs two tasks:
1 Real-time monitoring the components’ health status. Once

the execution error occurs, the current configuration will

be changed. At the same time, the problem component will

be restarted.
2 Improving the reliability of the robot localization.

Choosing the most reliable source for the mobile robot

localization data.
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Figure 6 (a) Simplified UML component model and (b) component state of its lifecycle
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Figure 7 Components developed under middleware framework for this study
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Table I Port definition and description of the components

Component Port type Interface Data type Description

Localization (all of the three kinds of components) DataOutPort LocOut RoboLoc Send component location

ServicePort getState RoboState Send component state

getReliability Float Send localization reliability

Mobile platform DataInPort LocIn RoboLoc Receive component location

ServicePort getState RoboState Send component state

Configuration ServicePort getState RoboState Receive component state

getReliability Float Get localization reliability
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For the purpose of switching the localization component, it is

convenient and intuitive to apply the greedy algorithm, that is,

always choose the component with the highest reliability. This

straightforward method has its drawback that if the reliabilities of

twocomponentsare close to eachotherduringa certain executing

process, the configuration will change frequently between these

two components. Therefore, we introduce a changing

punishment P to the original greedy algorithm. Suppose the

reliability of the current localization component is Rc, another

one’s is Rk. The component will be switched only if Rk 2 P . Rc.

The configuration pseudo-code is presented below:
Switching Algorithm
while execution not terminated

for each localization component Ci

Si ˆ getStatusðCiÞ
Ri ˆ getReliabilityðCiÞ
if Si ¼ ¼ ERROR, then Ri ˆ 0 endif

endfor
Rmax ˆ Max

i¼1;2; ... ;n
Ri

if Rmax 2 P . Rc, then
Disconnect(Cc)
Connect(Cmax )

Endif
End

where, R [ (0,1) is the reliability obtained by the approach

described in Section 2. The selection policy of P is as follow:
. For the fluency of the localization process, P is chosen to

be as large as possible to avoid the oscillation between

localization methods.
. For the localization accuracy, P is chosen to be as small as

possible to avoid robot lost situation.

We implemented an experiment in which we drove the robot

for 30 minutes and collected the data from all the

components. Different punishment values were applied to

the data. The switching times and the average localization

error are calculated and illustrated in Figure 8. Based on the

above two principles, we suggest to use P [ [0.1, 0.17].

5. Experiments and results

The robot was set in a large and complicated environment,

consisting of an indoor room, a corridor, a big hall and an

outdoor square (Figure 10(a)). In the experiment, the scenes
were deliberately chosen such that no single localization
method was adequate. Further, some interference was also
added such as changing some objects’ position after building
the map and having people moving around the robot, etc. The
experiments proved no individual method had the capacity to
successfully complete the entire task by itself.

As discussed above, each module is developed into RTC
module. The three environmental cameras are implemented in
Java on Windows. The three components on the mobile robot
are developed in Cþþ on Linux. And the planning component
is written in Python on Linux. The heterogeneous components
can be connected seamlessly thanks to the middleware
technology that enables the communication and collaboration
in real-time. The planner performs a supervisory role in the
manner we talked in Section 4. It first reads the reliability and
state of each localization component from the service port, and
then connects the data port of the mobileplatform component to
a favorable localization component. The system diagram is
detailed in Figure 9. The arrowed lines starting from service
provider to service consumer, transfer the states and reliabilities
to the planner. The dash lines connecting the data InPort and
OutPort, transfer the localization data.Upon analysis it becomes
obvious that one can add any number of extra localization
components to the system without any undue concern for
maintaining and modifying the existing components.

We established both 2D and 3D maps offline (Figure 10(l)),
and well installed the environmental cameras. The system
developed in this paper focuses on the robustness in robot
localization. In order to test the robustness, we have made a large
number of long time experiments. The robot was made to walk
along different routes by the remote control with the speed set to
0.5 m/s. As Figure 10 shows, it moved in a variety of scenes and
switched the localization methods according to the situation.
After 30 experiments each lasting about 30 minutes, it was found
thatonlyone lost situation occurred.For comparison, we alsodid
a number of short-term experiments using a single localization
method. The resulting statistic data is shown in Table II.

The table indicates that the LRF sensor and odometer based
approach, as well as the depth camera and odometer based one,
do not have good performance in the large-scale
complicated environment. Due to the effective range of the
LRF sensor being limited to 5 m, it always fails in the corridor.

Figure 8 Switch number and localization error with different changing punishment P

(a) (b)
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Figure 9 The system diagram of the experiment
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Table II The statistic results and comparison of the localization methods

LRF sensor Depth camera RTC based approach

Total time (min) 60 60 900

Walking distance (m) 1,307 1,348 19,650

Number of lost situation 19 15 1

Average switch delay (s) – – 0.135

Average accuracy (m) 0.145 0.227 0.089

Average reliability 0.875 0.812 0.913
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Depth camera’s performance is also poor in the corridor.

Its precision is vulnerable to the interference of close obstacles

because of its narrow visual angle. It is clear that the

collaboration of multi-robotic components significantly

improves the robustness and reliability. In our long-term

experiments up to 900 minutes, only one lost situation

occurred, and this happened after prolonged human

interference. In addition, the overall accuracy was significantly

improved on account of the integration of various components’

strongpoints. Making them compensate the deficiency of each

other proved to be a good solution.
We verified the influence of two kinds of time delay on

localization. One which is called the switch delay, is brought by

switching the data port and the other is the communication delay

on account of the network transmission. During a switching

process, it takes an average of 135 ms for the data port channel to

switch from the previous localization module to a new one. The

impact is subtle, for the reason that the port does not switch

frequently (typically switching happens about three to four times

per minute). On the other hand, the effect of communication

delay on localization is also very small attributed to the limited

data flow. According to our experiments, it takes less than 10 ms

through internet transmission from environmental camera to

mobile platform, and less than 1 ms from LRF and depth

camera. The latter time is shorter because those components are

implemented on the same computer. The velocity is 0.5 m/s,

so the communication delay brings the localization error less

than 0.5 cm, which may be considered negligible.
Figure 11 shows the reliability curves in the first 70 seconds of

one of the experiments. The robot followed the route marked in

Figure 10(l). The planning system changed the configuration

for six times in the whole process. At the beginning, the

environmental camera was employed. The result of LRF based

approach is poor, because it had not converged. When the robot

moved far from the camera, its reliability decreased. The first

switch occurred to utilize the depth camera component.

Subsequently, although the LRF component returned better

results than depth camera did, the system did not change its

configuration because the superiority did not overcome the

changing punishment. The robot then moved to the corridor

and changed to make use of another environmental camera until

the third switch occurred upon reaching the end of the corridor

in Figure 10(h). The robot returned from the corridor and

entered the big hall while switching to the LRF sensor. At the

fifth switch, some people passed the hall with the result that the

robot was seriously affected and the localization component was

switched to the depth camera. The last switch happened

because the robot reached the door and was about to move to the

out square, under this conditions the Kinent’s performance fell

as a result, the LRF sensor took over the localization task again.
It is obvious that this approach has combined the advantages of

all the components, and avoided their shortcomings.

To maximize this effect, the off-board components are

supposed to be set in other’s weakness position. For example,

the environmental camera should work at the area where the

onboard methods often fail. And other localization techniques

such as RFID (Cicirelli et al., 2012) or landmark (Lee, 2009)

based approaches can also join in at the appropriate location to

make the system stronger.

6. Conclusions and future works

A novel localization method in complicated environment based

on modular development, taking advantage of communication

and cooperation of heterogeneous robotic components has been

presented and successfully implemented. The middleware

technology which is required to achieve the long-term

coordination and easily expansion of these components has

been discussed. Experiments based on seven components which

are three environmental cameras, a LRF sensor, a depth camera,

a mobile base and a planning module, achieving a robust

localization system, were presented and applied successfully.

One deficiency exists arising from the lack of a unified model of

the reliability for all the localization components due to their

high diversity. We give the examples on how to model the

reliability on the basis of localization accuracy. It has been

proved that our work achieves the desirable result of improving

the robustness and accuracy of the localization system.
Currently further efforts are being made to implementing a

data fusion approach that rather than only chooses one

localization method each time, but combines them by

minimizing the likelihood function of their joint distribution

function. We plan to compare the fusion results with the results

in this paper in the future. What is more, the methods and

Figure 11 The reliability of the localization components in one of the experiments
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technologies presented in this paper are not limited to the robot
localization problem, but aiming at more general heterogeneous
robotic components and tasks. We have been working on a
grasping system based on similar methodologies. And advanced
planning algorithms are under investigation for the better
automation and higher intelligence.
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