
  

 

Abstract—The smart manufacturing program is gaining 

more and more research interests. To meet the requirements of 

increasingly low-volume, time-critical tasks, the traditional 

program-by-teaching methods should be replaced by more 

flexible and intelligent manufacturing processes. In this paper, 

we introduce the efforts of deploying ubiquitous robotic 

technology to the smart manufacturing program. Firstly, the 

various machinery processes are implemented as distributed 

components, which have standardized data ports and service 

ports. As a result, the machines could communicate and 

cooperate with each other. Further, a general-purpose task 

planner based on automated planning techniques is 

implemented to coordinate the machines for various tasks. We 

also use a test bed of smart assembly line to demonstrate the 

effectiveness of the proposed framework. Advances in planning 

technologies and cost reduction have brought the systems into 

the range of even small-to-medium enterprises.  

I. INTRODUCTION 

The industrial robots have brought sustained productivity 
increases and manufacturing growth. However, the traditional 
program-by-teaching method, which takes considerable time 
and requires extensive expertise, has kept them out of 
low-volume, time-critical tasks [1, 2]. The problems in today’s 
industrial robot market lies in that our planning processes are 
just as before: too sequential, too much hardware-oriented and 
too product-specific. In today’s manufacturing industry, the 
products need to be more individualized and be offered in 
more variants. They must be adjusted to the market 
requirements in shorter time. The product life cycles are 
shorter than ever before. As a result, the machines are not 
supposed to be pre-configured to follow sequential procedures, 
but should have the capacity of planning under uncertain and 
dynamic circumstances and collaborate with other machines.  

This brings the following two issues. Firstly, each 
machinery process should have sensory and planning ability 
and become more intelligent. Secondly, the system should be 
automatically configured to complete different manufacturing 
tasks without reprogramming. In view of the foregoing, we 
propose a framework of smart manufacturing program, which 
takes advantages of the ubiquitous robotic technology [3, 4]. 
Using ubiquitous robotic technology, different machinery 
processes are implemented into components. So machines 
become plug-and-play parts of the system. In different tasks, 
different components are called and configured automatically 
by an upper layer task planner. This paper firstly introduces 
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how these components are developed with sensing and 
planning abilities. Then a task planning module is presented.  

Many existing researches in smart manufacturing program 
focus on how to integrate RFID into the manufacturing system 
to collecting more data [5-7]. The manufacturing is smarter by 
tracking the processing information. We argue that it would 
achieve higher flexibility and intelligence if connecting not 
only the production but all the machinery processes, so that 
different robotic devices could collaborate into different 
groups according to different tasks. In the ubiquitous robotic 
systems, the most commonly employed planning techniques 
are based on Artificial Intelligence (AI). Young-Guk Ha et al. 
used SHOP2 planner to decompose services based on 
semantic knowledge [8]. Robert Lundh et al. implemented a 
configuration approach for their network robot system also 
based on SHOP planner [9]. Esra Erdem et al. presented an 
application of answer set programming (ASP) to 
housekeeping robotics [10]. Tim Niemueller et al. approached 
the task planning problem by deploying a rule engine [11]. 
These AI based planning methods play an important part in the 
ubiquitous robotic systems, and could also be applied to the 
manufacturing problems in the smart factory, which could 
reach a higher level of flexibility and agility.  

In view of the foregoing, we propose in this paper a 
framework of smart factory based on ubiquitous robotic 
technology. We employ a component based method to abstract 
each machinery process as a module with standardized 
communication ports. So different machines are able to 
communicate and cooperate with each other upon these ports. 
Furthermore, a task planning method based on general 
purpose automated planning method is developed to 
coordinate these components according to customers’ orders. 
A study case of the smart factory is implemented as a 
demonstration platform for our methods.  

II. SYSTEM ARCHITECTURE 

Compared to traditional manufacturing processes, one of 
the advantages of the smart manufacturing program is to 
complete different tasks through collaboration of distributed 
networked machines. The framework for smart manufacturing 
program is designed as Figure 1.  

In the low layer, the robotic devices are developed into 
components that they can “plug and play” in the system and be 
reused and reconfigured according to different manufacturing 
process. These components are the foundation of the system. 
As mentioned, robotic components are highly heterogeneous 
with respect to platforms such as operating system, 
programming language and communication media. 
Middleware is thus employed to generalize the components 
into a uniform abstraction which enables dynamic 
communication and coordination between any two of the 
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modules [12]. This also brings benefits to the modification of 
existing devices and the expansion of new ones.  

In the upper layer, a number of functionalities are 
developed in the internal cloud, such as the human-system 
interface, storage management, task planning, virtual 
manufacturing and big data collection. The customer orders 
products through a human-system interface. The order 
includes customized requests, for instance the favorite color 
and shape of the parts and whether the parts being polished etc. 
These orders are sent to the task planning module, which also 
utilizing the information from the storage management 
module. The planner is the key part of the system’s agility and 
intelligence. It turns customers’ orders into sub-task sequences, 
which can be directly carried out by corresponding robotic 
components. It is a general purpose planner, which will be 
detailed later. 
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Figure 1.   System architecture of the smart factory 

III. COMPONENT-BASED MACHINERY PROCESS 

The Robotic Technology Middleware Technology (RTM) 
is employed to integrate different machinery processes [13].  
Robotic Technology Component (RTC) is the basic element in 
the distributed system.  It encapsulates the hardware and 
software functionalities into modules with standardized data 
ports and service ports.  

 Data port: the data port is responsible for the 
continuous exchange of data. Each component can 
have any number of data in-ports and out-ports. A 
data out-port sends the data to a corresponding in-port 
which receives the data. 

 Service port: the service port provides the command 
based communication. The component with a service 
port, offering a set of services, listens for requests for 
those services via a connector. 

Further, we define three kinds of service ports, namely 
FuncGet, FuncSet and ExeStatusGet. The service port is 
responsible for the interaction with the upper layer.  

 FuncGet service port:  it reports to the service layer 
about the components’ state. For example, the 
polishing robot reports the available polishing 

configuration; the Autonomous Intelligent Mobile 
Manipulator (AIMM) feeds back its coordinates.  

 FuncSet service port: it provides the functionality 
invoking, such as setting the target position for the 
AIMM, start polishing with certain configuration.  

 ExeStatusGet service port: it reports the execution 
status, for example whether or not the AIMM has 
reached its destination.  

Each component may have any number of data ports for 
continuous data exchange between components. As shown in 
Figure 2. , the task planner in the higher layer interacts with 
the components through the three kinds of service ports. 
Firstly, the components’ states are sent to the upper layer 
through ‘FuncGet’ service ports. These states are composed as 
the system state, which is input to the task planner. Secondly, 
the planner allocates the planning results to the components 
through ‘FuncSet’ service ports. Thirdly, while the 
components are executing the tasks, they report the execution 
status through the ‘ExeStatusGet’ ports.   
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Figure 2.  Some of the robotic components in our system. Each of the 

components has data ports and service ports.   

A. Polishing Component with path auto-generation 

Traditionally, the polishing path is taught by the expert 
engineers. This teaching process could be complex and 
tedious [14, 15]. In our smart factory, the polishing path is 
automatically generated from the CAD data (Figure 3 (b-c)). 
Then, the robot follows this path by a motion planning 
algorithm with collision avoidance (Figure 3 (d)). Besides, the 
polishing area is easy to specify with a user-friendly GUI as 
Figure 3 (a).  

The FuncSet service port of this component provides the 
polishing functionality calling.  In the upper layer, the task 
planning module calls on this service port following the results 
generated by the planner. Each functionality of the service 
ports corresponds to one symbolic action of the planning 
domain.  This polishing functionality is corresponds to the 
action: polish(polisher, object, configuration).  
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Figure 3.  (a) The polishing robot is grasping the working part based on the 

object recognition and localization of the RGB-D sensor. (b) The polishing 

path is auto-generated according to the 3D model of the working part. The 

dual-arm robot then follows the path by motion planning algorithm. 

B. AIMM Component 

AIMM is responsible for the transportation task that 
transports parts and work pieces between workstations and 
storages. Such transportation tasks contain physical separation 
larger than the workspace of the robot manipulator. This 
requires a lot of technologies such object recognition, grasp 
point generating, motion planning, localization, path planning 
and etc. It uses RGB-D camera for the object recognition and 
obstacle avoidance, and uses laser sensor for the localization.  

This component provides three functionalities, picking up 
an object from working spots, putting down an object from 
working spots and moving itself between working spots. 
These introduce three actions of the planning domain, which 
are move(AIMM, location1, location2), pickup(AIMM, object, 
location), and putdown(AIMM, object, location).  

 

Figure 4.  (a) AIMM is picking up a working part form the warehouse. The 

left bottom scene is from the RGB-D camera. The motion planner convert the 

3D data to grid obstacles. (b) AIMM is placeing the working part onto the 

mobile robot.  

 
Figure 5.  (a) The assembling robot is grasping the working part with visual 

detection. (b) The robot is assembling two parts together by visual detection.  

C. Assembling Component 

The assembling robot also has the sensing capability. The 
working parts are detected and located online with a camera. 
The visual detecting method is able to recognize complex 
shape. The localization error is within 1mm.  

The assembling component provides the assembling 
functionality. The corresponding action for planning module 
is assemble(assembler, part1, part2, configuration).  The 
assembler could handle different types of assembling tasks. 
For example, it is able to assemble parts with different shapes, 
different orientations, or different joint shape. This 
information is also calculated by the task planner, and passed 
to the assembler through the ‘configuration’ parameter.  

D. Object Recognition Component 

Object Recognition is the foundation of different kinds of 
robot tasks such as polishing, assembling and transferring. 
The object recognition component is based on the RGB-D 
sensor. It detects the positions and orientations of target object, 
which is usually texture-less in manufacturing context.  This 
study employs a combination of 2D template matching and 3D 
pose estimation techniques as Figure 6.  shows.  The 
composite of template consists of two parts, Gradient 
Orientation Map and 3D Orientation Coarse Estimation.   

This component provides the recognition and localization 
of a number of predefined objects.  It returns the object’s 
localization and orientation. The corresponding action is 
objRecognize(camera, objName).  

 

Figure 6.  Texture-less object recognition using combination of 2D template 

matching and 3D pose estimation  

E. Virtual manufacturing 

A simulation environment is implemented using 
AutoMod® as Figure 7.  shows. It empowers the designers to 
achieve a better layout of the machines, optimize the device 
configurations and fast adapt to change of the manufacturing 
task.   

The simulation process plays an important role in the 
designing and implementation. It generates the statistic results 
on production, rate of capacity utilization and etc. It helps to 
improve the configuration of the production line.  The Figure 
7(c) shows the production number in 12 hours simulation. It is 
also reported that the cutting process of the CNCs on the right 
side is time consuming. Improve this process process is the 
key issue to improve the factory’s production efficiency. 
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Figure 7.  (a) The simulation environment of the virtual manufactuing 

system, (b) Simulation on CNC and industiral robot arm, (c) The 

manufacturing efficiency statistics  

IV. GENERAL TASK PLANNING MODULE BASED ON 

AUTOMATED PLANNING TECHNIQUE 

The task planning module is a crucial part in the smart 
manufacturing system. The problem of task planning is a hard 
open problem for distributed systems. In the industrial domain, 
the tasks are complicated and the situations are dynamic. It is 
unlikely to predefine all the possible states. As a result, a 
flexible and robust planning method is needed. What’s more, 
it is supposed to be a domain-independent general approach 
for solving a variety of problems. 

A. Task Modeling 

Task modeling is the precondition of the task planning. 
The quality of the planning result is greatly depends on the 
expressivity of the task model. On the other hand, the more 
complicated of the model, the more difficult for the planner to 
solve the problem.  

This paper follows the techniques in automated planning 
field. The Task planning problem is modeled as a state 
transition system. Formally, it is modeled as a five-tuple 

( , , , , )S A c I G , where: 

 
1 2{ , , }S s s is a finite set of world states; 

 1 2{ , , }A a a is a finite set of actions, each a A  is 

a triple ( , , )a a aname pre eff  referred to the action’s 

name, precondition and effects respectively.  

 
0:c A   is the cost function;  

 I S  is a set demotes the initial state; 

 G S  is a set denotes the goal state.  

To further depict the planning domain and planning 
problem, the Planning Domain Definition Language (PDDL) 
[16] is employed. Some sample actions are shown below, 
representing the moving capability of the mobile robot and the 
grasping capability of a robot arm. 

(:action drive 

 :parameters (?r - mobile ?start - place ?dist - place) 

 :precondition (and (at ?r ?start) (can-locate ?r)) 

 :effect (and (at ?r ?dist) (not (at ?r ?start)))) 

(:action pickup 

 :parameters (?a - arm ?o - object ?p - plane) 

 :precondition (and (beside ?a ?p) (on ?o ?p)) 

 :effect (and (in ?o ?a) (not (on ?o ?p)))) 

(:action putdown 

 :parameters (?a - arm ?o - object ?p - plane) 

 :precondition (and (beside ?a ?p) (in ?o ?a)) 

 :effect (and (on ?o ?p) (not (in ?o ?a)))) 

B. Task Planning 

Inspired by International Planning Competition (IPC), the 
automated planning technology has been significantly 
improved these years. The increase was mainly due to three 
fundamental approaches in plan generation. First, the 
Graphplan approach [17] improved the planning efficiency by 
a relaxation method based on planning graphs. The second 
approach is the planning as satisfiability method [18], which 
uses propositional reasoning to solve the planning problem. 
The third is the heuristic searching [19] that accelerates the 
search speed with heuristic function.  

This paper employs the heuristic search based algorithm to 
solve the planning problem we defined above, referring to the 
Fast Downward (FD) planner [19]. The PDDL files are 
translated to build a search space, which can be seen as a 
directed graph, where the node denotes the state of the system, 
and the link denotes the action that make the system transfer 
from one state to another. FD searches the shortest path that 
starts from the initial state and reaches the goal state. The links 
on the path compose an action sequence, which is the planning 
solution. We improve the FD planner by adapting it to the 
online planning system. The detailed algorithm is shown 
below.  

Algorithm 1: Task planning 

while exists task T uncompleted:  

for each alive component 
iC :  

                readState( )i is C  

                if is  is ERROR_STATE: reset(
iC ) endif 

        endfor 

       0 1analyzeState( , , )initS s s  

       analyzeTask( )goalS T  

       taskModelPDDL( , )task init goalP S S  

       FDplanner( , )result task domainT P P  

       for each sub-task 
it  in 

resultT : 

               while( execute( )i ir t  not complete) endwhile 

               if ir  is SUCCESS: continue 

               else:  break with failure  

               endif 

       endfor 

       if not failure: mark T as completed 

endwhile 

 

(a) 

(b) (c) 
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Figure 8.  The  screen shots of the execution process of one manufacturing task. (a) the customer is placing an order; (b) the task planner calculates the actions 

according to the order and the system state; (c) the AIMM is grasping the working part from the storage shelf; (d) the mobile robot is delivering the working part 

with localization info from the laser localization component; (e) the polishing robot is polishing the working part; (f) the assembling robot is assembling two 

working parts.   

C. Combining middleware and task planner 

As illustrates, the service layer and the device layer 
communicate through 3 kinds of service ports, namely 
FuncGet, FuncSet and ExeStatusGet. The Device Manager is 
developed as the bridge between these two layers.  

Firstly, the FuncGet service ports are used by readState(Ci) 
function with respect to Algorithm 1. Each component Ci 
provides the functionality of reporting its own states. For 
instance, the object recognition component reports the name 
of objects that are currently in its view. All these states are 
translated by the Device Manager, and then form the initial 
state fed to the task planner.  

Secondly, the planning result is in the form of action 
sequences, such as ‘drive AGV spot1 spot2’, ‘pickup AIMM 
object1 polisher_station’, etc. Notice that the first item is the 
action name, and the second item is configured as the 
component name, of who is in charge of this action. Device 
Manger compiles each action into a method-call through 
associated FuncSet service port. For example, the above two 
actions are compiled as AGV.move_to(spot2_x, spot2_y), 
AIMM.pickup(object1_id) respectively. These methods are 
defined in an interface definition language (IDL) file for each 
service port. 

Thirdly, when executing each action, it is important to 
monitor its status. If it’s successful, it can move on to the next 
action, while if it’s failing, it can start that over again. The 
ExeStatusGet service ports are responsible for reporting the 
execution status. There are 4 types of status, namely idle, 
running, success and failure.  

Another way to execute an action is to connect two 
components’ data ports. As the localization example of the 
video shows, every time the mobile robot switching 

localization component, it switches the data port, to which it 
connect its own data port.   

Two major benefits of this approach are it allows an easy 

extension with new components and allows an easy transition 

to new task domains. Adding new components has little side 

effect on the existing ones and the planning module. All that 

need to take care is to define the three kinds of service ports or 

other necessary data ports. Besides, same set of components 

can be used in different task domains, as long as the PDDL 

files are provided.  

V. EXPERIMENTS AND RESULTS 

A smart factory was implemented based on the ubiquitous 
robotic technology. It took in customers’ individualized order 
and arranged the producing process accordingly. Figure 8 
shows one execution of the smart factory task. First, the 
customer made an order through the user interface. The order 
was then sent to the task planning module, which calculated 
the action sequence hierarchically. 3D printers started to make 
parts with specific color and shape as Figure 8 (b). Meanwhile, 
the AIMM transported the part from the storage to the 
polishing station as shown in Figure 8 (c-e). After that, the 
dual-arm polishing robot polished the part according to 
customer’s configuration as Figure 8 (f). At last, the parts were 
transported to the assembling spot after which the product was 
successfully processed as Figure 8 (g-h). 

With the component-based framework, every machinery 

process is ready to cooperate with each other. For instance, 

the continuous localization data is transferred from the laser 

sensor to the AIMM’s path planning module through data 

port. And the polishing robot gets the location of object from 

the object recognition component. Further, this modular 
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framework also facilitates the easy expansion of new devices 

and painless modification of the existing devices. For 

example, when we added new AGVs to the smart factory, no 

modification is needed for the system architecture, planning 

algorithm and any of other components. All that needed is to 

register the added AGVs to the planner, so that they can be 

called by the planner. 

Compared to the traditional manufacturing systems, our 

system is more flexible and efficient. The industrial robots in 

our systems are all capable of sensing and planning 

techniques. Such as the picking, placing, polishing and 

assembling, none of these robots are setting by teaching 

methods. As a result, it is more accessible to dynamic tasks. 

For example, the polishing robot in our system is capable of 

polish objects with different shapes and polishing areas; and 

the assembling robot is able to assemble working parts in in 

different locations and from different directions. We also 

upgrade the system with more AGVs for transferring the parts 

between the storage center and the working station. No 

modification is needed when deploying the existing 

components to the upgraded one. All that needed is adding 

some new components, and upgrading the domain description 

file. The components and the planning module are reusable 

for different domains.  

VI. SUMMARY AND FUTURE WORK 

The smart manufacturing system is increasingly popular as 

the manufacturing tasks are becoming more individualized 

and flexible. This paper presents the efforts of deploying the 

ubiquitous robotic technology to the smart manufacturing 

program. A component based framework has been proposed, 

and proved to be suitable for industrial domain. Further, to 

complete various task in dynamic situations, a planning 

method based on automated planning techniques is 

implemented to coordinate the machines. 

A smart assembling line was implemented as the testing 

bed of our framework and algorithms. The customized orders 

were processed by the system that arranged the producing 

process accordingly. The results showed that the framework 

facilitates the communication and cooperation between the 

robotic components. Further the planning method has enabled 

the system to tackle various tasks in dynamic situation.  

The networked machines collaborating intelligently could 

bring a substantial improvement over traditional industrial 

robots. It is very important to further improve the sensing and 

planning ability of each machinery process as well as improve 

the overall task planning algorithm to achieve better 

autonomy. Advances in planning technologies and cost 

reduction could bring the systems into the range of even 

small-to-medium enterprises. 
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