

Abstract—The smart manufacturing program is gaining

more and more research interests. To meet the requirements of

increasingly low-volume, time-critical tasks, the traditional

program-by-teaching methods should be replaced by more

flexible and intelligent manufacturing processes. In this paper,

we introduce the efforts of deploying ubiquitous robotic

technology to the smart manufacturing program. Firstly, the

various machinery processes are implemented as distributed

components, which have standardized data ports and service

ports. As a result, the machines could communicate and

cooperate with each other. Further, a general-purpose task

planner based on automated planning techniques is

implemented to coordinate the machines for various tasks. We

also use a test bed of smart assembly line to demonstrate the

effectiveness of the proposed framework. Advances in planning

technologies and cost reduction have brought the systems into

the range of even small-to-medium enterprises.

I. INTRODUCTION

The industrial robots have brought sustained productivity
increases and manufacturing growth. However, the traditional
program-by-teaching method, which takes considerable time
and requires extensive expertise, has kept them out of
low-volume, time-critical tasks [1, 2]. The problems in today’s
industrial robot market lies in that our planning processes are
just as before: too sequential, too much hardware-oriented and
too product-specific. In today’s manufacturing industry, the
products need to be more individualized and be offered in
more variants. They must be adjusted to the market
requirements in shorter time. The product life cycles are
shorter than ever before. As a result, the machines are not
supposed to be pre-configured to follow sequential procedures,
but should have the capacity of planning under uncertain and
dynamic circumstances and collaborate with other machines.

This brings the following two issues. Firstly, each
machinery process should have sensory and planning ability
and become more intelligent. Secondly, the system should be
automatically configured to complete different manufacturing
tasks without reprogramming. In view of the foregoing, we
propose a framework of smart manufacturing program, which
takes advantages of the ubiquitous robotic technology [3, 4].
Using ubiquitous robotic technology, different machinery
processes are implemented into components. So machines
become plug-and-play parts of the system. In different tasks,
different components are called and configured automatically
by an upper layer task planner. This paper firstly introduces

* Resrach supported by Yaskawa Electric Corporation.

Qixin Cao, Wenshan Wang, Xiaoxiao Zhu and Chuntao Leng are with the

Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China

(Chuntao Leng: 13816896878; e-mail: 1352481640 @ qq.com).

Masaru Adachi is with the Yaskawa Electric Corporation, Fukuoka, Japan

how these components are developed with sensing and
planning abilities. Then a task planning module is presented.

Many existing researches in smart manufacturing program
focus on how to integrate RFID into the manufacturing system
to collecting more data [5-7]. The manufacturing is smarter by
tracking the processing information. We argue that it would
achieve higher flexibility and intelligence if connecting not
only the production but all the machinery processes, so that
different robotic devices could collaborate into different
groups according to different tasks. In the ubiquitous robotic
systems, the most commonly employed planning techniques
are based on Artificial Intelligence (AI). Young-Guk Ha et al.
used SHOP2 planner to decompose services based on
semantic knowledge [8]. Robert Lundh et al. implemented a
configuration approach for their network robot system also
based on SHOP planner [9]. Esra Erdem et al. presented an
application of answer set programming (ASP) to
housekeeping robotics [10]. Tim Niemueller et al. approached
the task planning problem by deploying a rule engine [11].
These AI based planning methods play an important part in the
ubiquitous robotic systems, and could also be applied to the
manufacturing problems in the smart factory, which could
reach a higher level of flexibility and agility.

In view of the foregoing, we propose in this paper a
framework of smart factory based on ubiquitous robotic
technology. We employ a component based method to abstract
each machinery process as a module with standardized
communication ports. So different machines are able to
communicate and cooperate with each other upon these ports.
Furthermore, a task planning method based on general
purpose automated planning method is developed to
coordinate these components according to customers’ orders.
A study case of the smart factory is implemented as a
demonstration platform for our methods.

II. SYSTEM ARCHITECTURE

Compared to traditional manufacturing processes, one of
the advantages of the smart manufacturing program is to
complete different tasks through collaboration of distributed
networked machines. The framework for smart manufacturing
program is designed as Figure 1.

In the low layer, the robotic devices are developed into
components that they can “plug and play” in the system and be
reused and reconfigured according to different manufacturing
process. These components are the foundation of the system.
As mentioned, robotic components are highly heterogeneous
with respect to platforms such as operating system,
programming language and communication media.
Middleware is thus employed to generalize the components
into a uniform abstraction which enables dynamic
communication and coordination between any two of the

Study on Ubiquitous Robotic Systems for Smart Manufacturing

Program*

Qixin Cao, Wenshan Wang, Xiaoxiao Zhu, Chuntao Leng, Masaru Adachi

2016 IEEE International Workshop on
Advanced Robotics and its Social Impacts (ARSO)
Shanghai, China, July 8-10, 2016

978-1-5090-4079-7/16/$31.00 ©2016 IEEE 164

modules [12]. This also brings benefits to the modification of
existing devices and the expansion of new ones.

In the upper layer, a number of functionalities are
developed in the internal cloud, such as the human-system
interface, storage management, task planning, virtual
manufacturing and big data collection. The customer orders
products through a human-system interface. The order
includes customized requests, for instance the favorite color
and shape of the parts and whether the parts being polished etc.
These orders are sent to the task planning module, which also
utilizing the information from the storage management
module. The planner is the key part of the system’s agility and
intelligence. It turns customers’ orders into sub-task sequences,
which can be directly carried out by corresponding robotic
components. It is a general purpose planner, which will be
detailed later.

RT Middleware

Fast Ethernet

Wireless Network

Internal Cloud
Big Data

Collection

Virtual

Manufacturing

Task

Planning

Human-System

Interface

Storage

Management

Properties Reading
Functionalities Calling
Working Status Querying

Figure 1. System architecture of the smart factory

III. COMPONENT-BASED MACHINERY PROCESS

The Robotic Technology Middleware Technology (RTM)
is employed to integrate different machinery processes [13].
Robotic Technology Component (RTC) is the basic element in
the distributed system. It encapsulates the hardware and
software functionalities into modules with standardized data
ports and service ports.

 Data port: the data port is responsible for the
continuous exchange of data. Each component can
have any number of data in-ports and out-ports. A
data out-port sends the data to a corresponding in-port
which receives the data.

 Service port: the service port provides the command
based communication. The component with a service
port, offering a set of services, listens for requests for
those services via a connector.

Further, we define three kinds of service ports, namely
FuncGet, FuncSet and ExeStatusGet. The service port is
responsible for the interaction with the upper layer.

 FuncGet service port: it reports to the service layer
about the components’ state. For example, the
polishing robot reports the available polishing

configuration; the Autonomous Intelligent Mobile
Manipulator (AIMM) feeds back its coordinates.

 FuncSet service port: it provides the functionality
invoking, such as setting the target position for the
AIMM, start polishing with certain configuration.

 ExeStatusGet service port: it reports the execution
status, for example whether or not the AIMM has
reached its destination.

Each component may have any number of data ports for
continuous data exchange between components. As shown in
Figure 2. , the task planner in the higher layer interacts with
the components through the three kinds of service ports.
Firstly, the components’ states are sent to the upper layer
through ‘FuncGet’ service ports. These states are composed as
the system state, which is input to the task planner. Secondly,
the planner allocates the planning results to the components
through ‘FuncSet’ service ports. Thirdly, while the
components are executing the tasks, they report the execution
status through the ‘ExeStatusGet’ ports.

Task

Planner

Domain
KnowledgePlanning

Problem

task1 task2 task3
Auto-
generate

Actions

Robotic Components

Task allocation and monitoring

Allocation
Actions

Execution
Status

…

User Ordering System
Predefined in PDDL

System
State

Component
States

States

AIMMPolishing RobotObject
Recognition

Assembling
Robot

...

Figure 2. Some of the robotic components in our system. Each of the

components has data ports and service ports.

A. Polishing Component with path auto-generation

Traditionally, the polishing path is taught by the expert
engineers. This teaching process could be complex and
tedious [14, 15]. In our smart factory, the polishing path is
automatically generated from the CAD data (Figure 3 (b-c)).
Then, the robot follows this path by a motion planning
algorithm with collision avoidance (Figure 3 (d)). Besides, the
polishing area is easy to specify with a user-friendly GUI as
Figure 3 (a).

The FuncSet service port of this component provides the
polishing functionality calling. In the upper layer, the task
planning module calls on this service port following the results
generated by the planner. Each functionality of the service
ports corresponds to one symbolic action of the planning
domain. This polishing functionality is corresponds to the
action: polish(polisher, object, configuration).

165

Figure 3. (a) The polishing robot is grasping the working part based on the

object recognition and localization of the RGB-D sensor. (b) The polishing

path is auto-generated according to the 3D model of the working part. The

dual-arm robot then follows the path by motion planning algorithm.

B. AIMM Component

AIMM is responsible for the transportation task that
transports parts and work pieces between workstations and
storages. Such transportation tasks contain physical separation
larger than the workspace of the robot manipulator. This
requires a lot of technologies such object recognition, grasp
point generating, motion planning, localization, path planning
and etc. It uses RGB-D camera for the object recognition and
obstacle avoidance, and uses laser sensor for the localization.

This component provides three functionalities, picking up
an object from working spots, putting down an object from
working spots and moving itself between working spots.
These introduce three actions of the planning domain, which
are move(AIMM, location1, location2), pickup(AIMM, object,
location), and putdown(AIMM, object, location).

Figure 4. (a) AIMM is picking up a working part form the warehouse. The

left bottom scene is from the RGB-D camera. The motion planner convert the

3D data to grid obstacles. (b) AIMM is placeing the working part onto the

mobile robot.

Figure 5. (a) The assembling robot is grasping the working part with visual

detection. (b) The robot is assembling two parts together by visual detection.

C. Assembling Component

The assembling robot also has the sensing capability. The
working parts are detected and located online with a camera.
The visual detecting method is able to recognize complex
shape. The localization error is within 1mm.

The assembling component provides the assembling
functionality. The corresponding action for planning module
is assemble(assembler, part1, part2, configuration). The
assembler could handle different types of assembling tasks.
For example, it is able to assemble parts with different shapes,
different orientations, or different joint shape. This
information is also calculated by the task planner, and passed
to the assembler through the ‘configuration’ parameter.

D. Object Recognition Component

Object Recognition is the foundation of different kinds of
robot tasks such as polishing, assembling and transferring.
The object recognition component is based on the RGB-D
sensor. It detects the positions and orientations of target object,
which is usually texture-less in manufacturing context. This
study employs a combination of 2D template matching and 3D
pose estimation techniques as Figure 6. shows. The
composite of template consists of two parts, Gradient
Orientation Map and 3D Orientation Coarse Estimation.

This component provides the recognition and localization
of a number of predefined objects. It returns the object’s
localization and orientation. The corresponding action is
objRecognize(camera, objName).

Figure 6. Texture-less object recognition using combination of 2D template

matching and 3D pose estimation

E. Virtual manufacturing

A simulation environment is implemented using
AutoMod® as Figure 7. shows. It empowers the designers to
achieve a better layout of the machines, optimize the device
configurations and fast adapt to change of the manufacturing
task.

The simulation process plays an important role in the
designing and implementation. It generates the statistic results
on production, rate of capacity utilization and etc. It helps to
improve the configuration of the production line. The Figure
7(c) shows the production number in 12 hours simulation. It is
also reported that the cutting process of the CNCs on the right
side is time consuming. Improve this process process is the
key issue to improve the factory’s production efficiency.

166

Figure 7. (a) The simulation environment of the virtual manufactuing

system, (b) Simulation on CNC and industiral robot arm, (c) The

manufacturing efficiency statistics

IV. GENERAL TASK PLANNING MODULE BASED ON

AUTOMATED PLANNING TECHNIQUE

The task planning module is a crucial part in the smart
manufacturing system. The problem of task planning is a hard
open problem for distributed systems. In the industrial domain,
the tasks are complicated and the situations are dynamic. It is
unlikely to predefine all the possible states. As a result, a
flexible and robust planning method is needed. What’s more,
it is supposed to be a domain-independent general approach
for solving a variety of problems.

A. Task Modeling

Task modeling is the precondition of the task planning.
The quality of the planning result is greatly depends on the
expressivity of the task model. On the other hand, the more
complicated of the model, the more difficult for the planner to
solve the problem.

This paper follows the techniques in automated planning
field. The Task planning problem is modeled as a state
transition system. Formally, it is modeled as a five-tuple

(, , , ,)S A c I G , where:

1 2{ , , }S s s is a finite set of world states;

 1 2{ , , }A a a is a finite set of actions, each a A is

a triple (, ,)a a aname pre eff referred to the action’s

name, precondition and effects respectively.

0:c A is the cost function;

 I S is a set demotes the initial state;

 G S is a set denotes the goal state.

To further depict the planning domain and planning
problem, the Planning Domain Definition Language (PDDL)
[16] is employed. Some sample actions are shown below,
representing the moving capability of the mobile robot and the
grasping capability of a robot arm.

(:action drive

 :parameters (?r - mobile ?start - place ?dist - place)

 :precondition (and (at ?r ?start) (can-locate ?r))

 :effect (and (at ?r ?dist) (not (at ?r ?start))))

(:action pickup

 :parameters (?a - arm ?o - object ?p - plane)

 :precondition (and (beside ?a ?p) (on ?o ?p))

 :effect (and (in ?o ?a) (not (on ?o ?p))))

(:action putdown

 :parameters (?a - arm ?o - object ?p - plane)

 :precondition (and (beside ?a ?p) (in ?o ?a))

 :effect (and (on ?o ?p) (not (in ?o ?a))))

B. Task Planning

Inspired by International Planning Competition (IPC), the
automated planning technology has been significantly
improved these years. The increase was mainly due to three
fundamental approaches in plan generation. First, the
Graphplan approach [17] improved the planning efficiency by
a relaxation method based on planning graphs. The second
approach is the planning as satisfiability method [18], which
uses propositional reasoning to solve the planning problem.
The third is the heuristic searching [19] that accelerates the
search speed with heuristic function.

This paper employs the heuristic search based algorithm to
solve the planning problem we defined above, referring to the
Fast Downward (FD) planner [19]. The PDDL files are
translated to build a search space, which can be seen as a
directed graph, where the node denotes the state of the system,
and the link denotes the action that make the system transfer
from one state to another. FD searches the shortest path that
starts from the initial state and reaches the goal state. The links
on the path compose an action sequence, which is the planning
solution. We improve the FD planner by adapting it to the
online planning system. The detailed algorithm is shown
below.

Algorithm 1: Task planning

while exists task T uncompleted:

for each alive component
iC :

 readState()i is C

 if is is ERROR_STATE: reset(
iC) endif

 endfor

 0 1analyzeState(, ,)initS s s

 analyzeTask()goalS T

 taskModelPDDL(,)task init goalP S S

 FDplanner(,)result task domainT P P

 for each sub-task
it in

resultT :

 while(execute()i ir t not complete) endwhile

 if ir is SUCCESS: continue

 else: break with failure

 endif

 endfor

 if not failure: mark T as completed

endwhile

(a)

(b) (c)

167

Figure 8. The screen shots of the execution process of one manufacturing task. (a) the customer is placing an order; (b) the task planner calculates the actions

according to the order and the system state; (c) the AIMM is grasping the working part from the storage shelf; (d) the mobile robot is delivering the working part

with localization info from the laser localization component; (e) the polishing robot is polishing the working part; (f) the assembling robot is assembling two

working parts.

C. Combining middleware and task planner

As illustrates, the service layer and the device layer
communicate through 3 kinds of service ports, namely
FuncGet, FuncSet and ExeStatusGet. The Device Manager is
developed as the bridge between these two layers.

Firstly, the FuncGet service ports are used by readState(Ci)
function with respect to Algorithm 1. Each component Ci
provides the functionality of reporting its own states. For
instance, the object recognition component reports the name
of objects that are currently in its view. All these states are
translated by the Device Manager, and then form the initial
state fed to the task planner.

Secondly, the planning result is in the form of action
sequences, such as ‘drive AGV spot1 spot2’, ‘pickup AIMM
object1 polisher_station’, etc. Notice that the first item is the
action name, and the second item is configured as the
component name, of who is in charge of this action. Device
Manger compiles each action into a method-call through
associated FuncSet service port. For example, the above two
actions are compiled as AGV.move_to(spot2_x, spot2_y),
AIMM.pickup(object1_id) respectively. These methods are
defined in an interface definition language (IDL) file for each
service port.

Thirdly, when executing each action, it is important to
monitor its status. If it’s successful, it can move on to the next
action, while if it’s failing, it can start that over again. The
ExeStatusGet service ports are responsible for reporting the
execution status. There are 4 types of status, namely idle,
running, success and failure.

Another way to execute an action is to connect two
components’ data ports. As the localization example of the
video shows, every time the mobile robot switching

localization component, it switches the data port, to which it
connect its own data port.

Two major benefits of this approach are it allows an easy

extension with new components and allows an easy transition

to new task domains. Adding new components has little side

effect on the existing ones and the planning module. All that

need to take care is to define the three kinds of service ports or

other necessary data ports. Besides, same set of components

can be used in different task domains, as long as the PDDL

files are provided.

V. EXPERIMENTS AND RESULTS

A smart factory was implemented based on the ubiquitous
robotic technology. It took in customers’ individualized order
and arranged the producing process accordingly. Figure 8
shows one execution of the smart factory task. First, the
customer made an order through the user interface. The order
was then sent to the task planning module, which calculated
the action sequence hierarchically. 3D printers started to make
parts with specific color and shape as Figure 8 (b). Meanwhile,
the AIMM transported the part from the storage to the
polishing station as shown in Figure 8 (c-e). After that, the
dual-arm polishing robot polished the part according to
customer’s configuration as Figure 8 (f). At last, the parts were
transported to the assembling spot after which the product was
successfully processed as Figure 8 (g-h).

With the component-based framework, every machinery

process is ready to cooperate with each other. For instance,

the continuous localization data is transferred from the laser

sensor to the AIMM’s path planning module through data

port. And the polishing robot gets the location of object from

the object recognition component. Further, this modular

168

framework also facilitates the easy expansion of new devices

and painless modification of the existing devices. For

example, when we added new AGVs to the smart factory, no

modification is needed for the system architecture, planning

algorithm and any of other components. All that needed is to

register the added AGVs to the planner, so that they can be

called by the planner.

Compared to the traditional manufacturing systems, our

system is more flexible and efficient. The industrial robots in

our systems are all capable of sensing and planning

techniques. Such as the picking, placing, polishing and

assembling, none of these robots are setting by teaching

methods. As a result, it is more accessible to dynamic tasks.

For example, the polishing robot in our system is capable of

polish objects with different shapes and polishing areas; and

the assembling robot is able to assemble working parts in in

different locations and from different directions. We also

upgrade the system with more AGVs for transferring the parts

between the storage center and the working station. No

modification is needed when deploying the existing

components to the upgraded one. All that needed is adding

some new components, and upgrading the domain description

file. The components and the planning module are reusable

for different domains.

VI. SUMMARY AND FUTURE WORK

The smart manufacturing system is increasingly popular as

the manufacturing tasks are becoming more individualized

and flexible. This paper presents the efforts of deploying the

ubiquitous robotic technology to the smart manufacturing

program. A component based framework has been proposed,

and proved to be suitable for industrial domain. Further, to

complete various task in dynamic situations, a planning

method based on automated planning techniques is

implemented to coordinate the machines.

A smart assembling line was implemented as the testing

bed of our framework and algorithms. The customized orders

were processed by the system that arranged the producing

process accordingly. The results showed that the framework

facilitates the communication and cooperation between the

robotic components. Further the planning method has enabled

the system to tackle various tasks in dynamic situation.

The networked machines collaborating intelligently could

bring a substantial improvement over traditional industrial

robots. It is very important to further improve the sensing and

planning ability of each machinery process as well as improve

the overall task planning algorithm to achieve better

autonomy. Advances in planning technologies and cost

reduction could bring the systems into the range of even

small-to-medium enterprises.

ACKNOWLEDGMENT

The authors gratefully acknowledge YASKAWA Electric

Corporation for supporting the collaborative research funds

under the project of “Research and Development of Key

Technologies for Smart Factory”.

REFERENCES

[1] J. Lee, H.-A. Kao, S. Yang, Service innovation and smart analytics for
industry 4.0 and big data environment, Procedia CIRP, 2014, 16: 3-8.

[2] Davis J, Edgar T, Porter J, et al. Smart manufacturing, manufacturing
intelligence and demand-dynamic performance[J]. Computers &
Chemical Engineering, 2012, 47: 145-156.

[3] A. Chibani, Y. Amirat, S. Mohammed, E. Matson, N. Hagita, M.
Barreto, Ubiquitous robotics: Recent challenges and future trends,
Robotics and Autonomous Systems, 2013, 61: 1162-1172.

[4] W. Wang, Q. Cao, X. Zhu, S. Liang, A Framework for Intelligent
Service Environments Based on Middleware and General Purpose Task
Planner, in: International Conference on Intelligent (IE), IEEE, 2015,
184-187.

[5] Huang G Q, Zhang Y F, Jiang P Y. RFID-based wireless manufacturing
for real-time management of job shop WIP inventories[J]. The
International Journal of Advanced Manufacturing Technology, 2008,
36(7-8): 752-764.

[6] Ngai E W T, Chau D C K, Poon J K L, et al. Implementing an
RFID-based manufacturing process management system: Lessons
learned and success factors[J]. Journal of Engineering and Technology
Management, 2012, 29(1): 112-130.

[7] Zhong R Y, Dai Q Y, Qu T, et al. RFID-enabled real-time
manufacturing execution system for mass-customization production[J].
Robotics and Computer-Integrated Manufacturing, 2013, 29(2):
283-292.

[8] Y.G. Ha, J.C. Sohn, Y.J. Cho, H. Yoon, A robotic service framework
supporting automated integration of ubiquitous sensors and devices,
Information Sciences, 177 (2007) 657-679.

[9] R. Lundh, L. Karlsson, A. Saffiotti, Autonomous functional
configuration of a network robot system, Robotics and Autonomous
Systems, 2008, 56: 819-830.

[10] E. Erdem, E. Aker, V. Patoglu, Answer set programming for
collaborative housekeeping robotics: representation, reasoning, and
execution, Intelligent Service Robotics, 2012, 5: 275-291.

[11] T. Niemueller, G. Lakemeyer, A. Ferrein, Incremental Task-Level
Reasoning in a Competitive Factory Automation Scenario, in: AAAI
Spring Symposium: Designing Intelligent Robots, 2013.

[12] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, W.-K. Yoon,
RT-middleware: distributed component middleware for RT (robot
technology), in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2005), IEEE, pp. 3933-3938.

[13] Wang W, Cao Q, Zhu X, et al. An automatic switching approach of
robotic components for improving robot localization reliability in
complicated environment[J]. Industrial Robot: An International Journal,
2014, 41(2): 135-144.

[14] Zhai M, McKenna G B. Surface energy of a polyurethane as a function

of film thickness, Proceedings of the annual technical conference,

Society of Plastics Engineers, ANTEC, Las Vegas. 2014.

[15] Zhai M, Yoon H, McKenna G. A Comparison of Particle Embedment

and Nanoindentation: Probing the Surface Properties of Polymeric

Materials, Bulletin of the American Physical Society, 2015, 60.

[16] D. McDermott, “PDDL–the planning domain definition language,” the
AIPS’98 Planning Competition Committee, 1998.

[17] A. L. Blum, M. L. Furst, “Fast planning through planning graph
analysis,” Artificial Intelligence, 2005, pp.279-298.

[18] H. A. Kautz, B. Selman, “Pushing the envelope: Planning,
propositional logic, and stochastic search,” In Proc. AAAI-96, pp.
1194-1201.

[19] B. Bonet, H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, 2001.

169

