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Abstract. Task modeling and task planning are very important in robotic sys-

tems especially for large-scale nondeterministic problems. Two widely studied 

models (the classical planning model and the Markov Decision Process (MDP) 

model) are inapplicable to such problems due to either inherently assumed de-

terminism or dimensional explosion. An amalgamation of these two results in a 

new model which is proposed in this study under the name “Reduced Markov 

Decision Process” (RMDP) model. This new model simplifies the conventional 

MDP model by reducing the branching factor of state transitions. Further, based 

on the RMDP model, a modified Dynamic Programming (DP) algorithm is pro-

posed. The RMDP model also facilitates online learning that adapts the model 

to environmental changes. A “forgetting” model is employed for this online ad-

justment. In the experiment, a ubiquitous robotic system is implemented for ro-

botic bar-tending task. The results demonstrate that the model conveniently fa-

cilitates online-updating to better match the real environment. 
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1 Introduction 

In recent years ubiquitous robotics has gained the attention of many researchers [1]. 

This technology is characterized by robotic devices dispersed in the environment such 

that they become a ubiquitous part of our daily lives. These distributed sensing and 

acting components provide services by communicating and collaborating over a net-

work. 

Such a system should have the capacity to translate user-commands to low-level 

actions, which can be directly executed by the distributed components. This calls for a 

task planning method that is capable of planning at the symbolic level for different 

tasks in a complex and dynamic environment.  

Most of the earlier ubiquitous robotic systems are task-specific. For example: ur-

ban cleaning [2]; self-localization and mapping [3]; or public guidance [4]; etc. In 

these task-specific situations, the task planner is left out, because the designers tend to 

prefer simpler methods such as finite state machine for the action selection. However, 

when faced with a dynamic environment and the need to provide general-purpose 
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services, it may be impossible to pre-consider all the situations, in which case a good 

task planner becomes critical.  

The most commonly employed techniques are based on Artificial Intelligence (AI). 

Young-Guk Ha et al. used SHOP2 planner to decompose services based on semantic 

knowledge [5]. Robert Lundh et al. implemented a configuration approach for their 

network robot system also based on SHOP planner [6]. These classical planners such 

as SHOP2 [7] and Fast-downward [8] are efficient. However, they cannot deal with 

dynamic situations with uncertainties as is the case in the real world. In response to 

this, some researchers have used probabilistic models in task planning problems. For 

example, Marco Barbosa et al. used Partially Observable Markov Decision Processes 

(POMDP) to model the tasks with uncertainty [9]. Marcello Cirillo et al. implemented 

RTLplan for probabilistic domains [10]. However, planning methods based on proba-

bilistic models suffer dimension explosion, which limits the size of the state space to 

impractical applications. Furthermore, the real environment is not only nondetermin-

istic but also dynamic. The stationary model would soon be inaccurate for the nonsta-

tionary environment, and need a revision.  

In view of the foregoing, we propose in this paper a Reduced MDP (RMDP) mod-

el, which is arrived at by introducing further assumptions to the MDP model. It is 

discussed in detail how this model can accelerate the planning process without com-

promising its expressivity on nondeterministic problems for real environments. Fur-

thermore, using the RMDP model, we propose an online learning algorithm, which 

allows the planning model to adapt to the system changes. Consequently, the planning 

results could be improved as well. A ubiquitous robotic system for bar-tending sce-

nario is implemented as a demonstration platform for these algorithms.  

This paper starts with a brief introduction to our ubiquitous robotic system and its 

component-based structure in section 2. Subsequently, in section 3, the RMDP model 

is proposed. The online learning capability that makes this method adaptive to dynam-

ic situations is presented in section 4 after which the results of the experiments are 

discussed in section 5. Finally, conclusions are drawn in section 6.  

2 System overview 

In contrast to the monolithic robot, the ubiquitous robotic system offers the advantage 

of distributed robotic sensing and acting devices in the environment to complete dif-

ferent tasks through collaboration [11]. This paper focuses on how to cooperate dif-

ferent robotic devices to complete complex tasks.   

The symbolic task planning module consists of a device manager, a task planner 

and an online learning module as Fig.1 shows. The device manager is responsible for 

transferring high-level tasks and monitoring low-level status. The planner turns users’ 

abstract commands into sub-task sequences, which can be directly carried out by cor-

responding robotic components. The online learning module adjusts the domain 

knowledge used by the task planner in real time, so that the planner could adapt to the 

environmental changes.  
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Fig. 1. System diagram for task planner and online learning 

The robotic devices in the system are developed based on middleware technology 

[12-13]. This component-based structure is the foundation of the system. It facilitates 

the execution of the planning results to fulfill realistic tasks in physical environment. 

Robotic devices are highly heterogeneous with respect to platforms such as operating 

system, programming language and communication media. Middleware is thus em-

ployed to generalize the components into a uniform abstraction which enables dynam-

ic communication and coordination between any two of the modules. Fig. 2 explains 

how the middleware “transparentizes” the hardware and software platforms, and of-

fers standardized access to the robotic devices.  

We implement our system based on (Robotic Technology) RT middleware [14-15]. 

In RT component, the ports are categorized into data ports and service ports. The data 

port is responsible for the continuous exchange of data. Each component can have any 

number of data in-ports and out-ports. A data out-port sends the data to a correspond-

ing in-port which receives the data. The service port provides the command based 

communication. The component with a service port, offering a set of services, listens 

for requests for those services via a connector.  

We further define three kinds of service ports, namely FuncGet, FuncSet and Ex-

eStatusGet as Fig. 2 shows. The service port is responsible for the interaction with the 

task planner and the learning module. FuncGet port reports to the upper layer about 

the components’ state. For example, the environmental camera provides the index of 

current robots within the field of vision; the mobile platform feeds back its coordi-

nates, etc. FuncSet port provides the functionality invoking, such as setting the target 

position for the mobile table, setting the localizing target for the environmental cam-

era, etc. ExeStatusGet port returns the execution status, for example whether or not 

the mobile table has reached its destination, or whether the environmental camera is 

locking onto its target.  

Each component may have any number of data ports for continuous data exchange 

between components. For instance, the localization information is transferred from 

the data out-port of environmental camera to the data in-port of the path planning 



component. Once two data ports are connected, those two components are able to 

perform real-time communication to accomplish the task collaboratively.  

 

Fig. 2. The distributed components are in the uniformed structure using middleware technology 

3 Task modeling and task planning 

As mentioned above, the different robotic functionalities are abstracted, and ready to 

be called through the service ports and data ports. As a result, the tasks in the service 

layer, can be modeled, analyzed and solved at symbolic level. This paper follows the 

techniques of automated planning derived from the AI field. The Task planning prob-

lem is modeled as a state transition system. Depending on different assumptions, var-

ious models are proposed. The two most commonly used models are the classical 

planning model [16-18] and the MDP model [19].  

The classical planning model is not particularly well-suited to practical problems 

due to its strict assumptions. The MDP model has good expressivity but is less suita-

ble for this study due to the large state space of ubiquitous robotic problems. To 

achieve better efficiency without sacrificing the expressivity on realistic problems, we 

propose the RMDP model by reducing the branching factor of the state transitions. 

The reason for the difficulty of solving MDP model comes from its large branching 

factor. It is assumed in RMDP model that after actions are executed by robotic com-

ponents, the outcome could be a few predictable states, which are the successful state 

and a few failed states. Take grasping action for instance, if the manipulator fails to 

pick up one object, the object will either remain where it is or drop on the table or 

floor. This assumption dramatically decreases the branching factor of the state space. 

As shown in Fig. 3, in MDP model, the branching factor of state transition is as large 

as the state number | |S . While in RMDP model, the branching factor is much small-

er.  Further, the RMDP employs multi-valued state variables instead of binary varia-

bles commonly applied in the existing automated planning domain languages [20-21]. 
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Fig. 3. (a) MDP model for state transition, (b) RMDP model for state transition 

Definition 1: RMDP model is defined as a five-tuple ( , , , , )V D A I G  :  

 1 2{ , , }V v v  is a finite set of state variables;  

 
1 2{ , , }, nD d d d  is a finite set of variable domains, each 

iv V  with a finite 

domain 
id D . V and D define the planning space S, where state s S  is repre-

sented as a vector 
1 2[ , ,..., ]nx x x , where i ix d  is the value of variable iv ;  

 
1 2{ , , }, mA a a a  is a finite set of actions, each 

ia A  is a triple ( , , )Pc Ef c  

referred to the action’s preconditions, effects and cost respectively.  

 I S  denotes the initial state; 

 G S  denotes the set of goal states. 

Definition 2: A partial state   is a value assignment of a subset of state variables 

V V  . Assuming 
1 2{ , ,..., }kV v v v    ,   is represented with a set of variable-

value pair 1 1 2 2{( , ),( , ),...( , )}k kv x v x v x      .  

Definition 3: A partial assignment is a function : S S   represents the state 

transition on a partial set of state variables 
1 2{ , ,..., }kV v v v    . Assuming 

( , ) 's s   and ( , )i iv x   , 's  is obtained by setting each variable 
iv  to 

ix  in 

state s.  

The precondition ( )Pc a  of action a is defined with a partial state ( )Pc a , where 

( )( , ) Pc a

i iv x    denotes the value of variable iv  should be ix  to satisfy the precon-

dition. The effects ( )Ef a  of action a is defined with an effect list 1 2[ , ,..., ]kef ef ef , 

where 
( )( , )Ef a

i i ief p   denotes the outcome state will be the parial assignment 

( )( , )Ef a

is   with probability ip , after the action’s execution. Each action has a cost c, 

which acts like a reward function in MDP model.  

The planning result of RMDP is also a policy : S A . The expected value 

( )VF s  of a policy   at a given state s  satisfies:  
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 (1) 

, where ( )c a  represents the cost of action a;   is the discount factor; ( )Ef a  repre-

sents the effects of action a. Similar to the MDP model, the optimal value function 

satisfies:  

 * * ( )

( , ) ( )

( ) min[ ( ) ( ( , ))]
i i

Ef a

i i
a A

p Ef a

VF s c a p VF s


 




     (2) 

The optimal policy *  is the one that minimizes the value function:  

 * * ( )

( , ) ( )

( ) argmin[ ( ) ( ( , ))]
i i

Ef a

i i
a A

p Ef a

s c a p VF s


  




     (3) 

With RMDP model, we derive the following modified Dynamic Programming (DP) 

algorithm according to equation (2) (3):  

Algorithm 1. Modified DP  

1. initialize value function ( ) 0VF s   for all s S  

2. repeat for each episode:  

3. initialize s as the initial state  

4. repeat for each step of episode: 

5. for each a  that is applicable to s: 

6. ( , ) ( , )i is Ef s a   

7. argmin [ ( ) ( ( , ))]a A i ia c a p VF s      

8. ( ) (1 ) ( ) [ ( ) ( ( , ))]i iVF s V s c a p VF s          

9. execute( , )s s a  

10. until s is the goal state  

11. until VF  converges 

12. ( , ) ( )
( ) argmin [ ( ) ( ( , ))]

i i
a A i ip Ef a

s c a p VF s


   
     

This algorithm modifies the value function iteratively as depicted in line 7 and line 

8, where (0,1]  is the step size, which controls the iteration speed. The value func-

tion is guaranteed to converge to *VF  given a sufficiently large number of iterations.  

4 Online model learning  

The automated planning methods in AI only consider the offline problems. However 

for practical problems, the model should adapt to dynamic and nonstationary envi-



ronments. For example, changing the position of furniture would alter the moving 

ability of the mobile robots. Consequently, as new information gained, the model 

should be improved online to make it more accurately match the real environment. 

This means the planner will gradually compute a new way of behaving to match the 

new model.  

The RMDP model describes the environmental uncertainty with the probabilistic 

effects of actions. This naturally allows a method for online learning of the transition 

probabilities. Recall that the probabilistic effects ( )Ef a   is defined with an effect list 

1 2[ , ,..., ]ke e e , where ( , )i i ie p   denotes the state will be changed by partial as-

signment ' ( , )i is s    with probability ip , after the executing action a. Intuitively, 

the transition probability 
ip  can be estimated by the number of times that it takes 

action a in state s to get to the state s’, divided by the total number of times that take 

action a in state s:  

 
#[( , ) ']

#[( , )]

i
i

s a s
p

s a
  (4) 

Following each execution instance of action a, the execution result is recorded by 

the online learning module. This module calculates the transition probabilitis as more 

execution results are recorded according to equation (4). However, since this method 

factors in each instance with equal weight, there could be great latency if the envi-

ronment suddenly changes. A solution is to make the system more “forgetful”, and 

give higher credit to recent experiences.  

Suppose the action a has been executed n times since the system was started. Fur-

ther supposing these executions happened on time steps 1

at , 2

at , …, 
a

nt and assuming 

the execution results are 1

ar , 2

ar , …, 
a

nr , where each {1,2,...,| ( ) |}a

ir Ef a . Define a 

binary function as follows:  
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An exponential forgetting model is defined as:  
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, where 
  is the forgetting factor. The larger the value of  , the more the sys-

tem is biased towards the recent experiences.   is set to 0.1 in the experiment de-

scribed in the following section.  

An iterative version which is easier to implement is as follows:  
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 where 1( )
( ) ( 1) 1

a a
n nt t

n e n
  

    (8) 

5 Experiment results 

5.1 The robot bar-tending experiment 

A bar-tending scenario was implemented as ubiquitous robotic system based on the 

middleware technology discussed in section 2. The task was to serve drinks to cus-

tomers. Different robotic devices were developed into components as shown in Fig. 4. 

There were two mobile tables with different color and size, one dual-arm robot for 

grasping the drinks and snacks on the bar counter, three environmental cameras to 

help the localization, two laser sensors mounted on the mobile tables for localization 

and obstacles avoiding, and other software components such as path planning, object 

recognition, etc.  

 

Fig. 4. Execution process of one bar-tending task 

This task environment comprised two rooms connected by a corridor. One human-

oid robot standing by the entrance took the orders from patrons. The tasks were gen-

erated according to the customers’ orders.  

The states and actions are predefined as domain knowledge. The initial state is re-

ported by each component through the FuncGet service port. The goal state is trans-

lated from the customer’s order. When all these information is ready, the planner 

calculates the policy using modified DP algorithm as detailed in section 3.  

The actions were then sent to each component for execution. Fig. 5 illustrates the 

execution process of one such task. First, the mobile table moved to the bar counter 



through laser localization. Next the dual-arm robot picked up the drink and snack 

ordered by customers, and placed them on the mobile table as Fig. 5 (b-d) show. The 

mobile table then moved to the other room where two customers picked their food 

and drink while at their tables. As the mobile table traveled through the corridor, the 

laser failed to provide the localization information, so the environmental camera 

mounted on the ceiling started to localize the robot as Fig. 5 (e). The execution status 

of each action was monitored by querying on the ExeStatusGet service port. Once any 

error or failure occurred, a new action was executed according to the policy without 

re-planning the whole task.  

5.2 Online adapting to environment changes 

The online learning method was tested by the following scenario: The objective is to 

have the drinks delivered to the next room. Initially the doorway was fully open, 

hence the mobile tables had no difficulty passing through it. Sometime later half of 

the doorway was closed, so that the larger mobile robot often failed to pass through.  

 

Fig. 5. Online adjusting the model when the environment changes 

The same task was repeated 40 times. In the first 20 times, the door was open. The 

bigger robot - which is initially located closer to the bar counter - was sent to deliver 

the drinks. From the 21st episode onwards, the doorway was half closed. As Fig. 6 

shows, a sharp drop in the reward was registered as a result of execution failure. 

Three methods were compared. Namely: using the average model; forgetting model; 

and the one without online adjustment. The two methods with online learning altered 

the success rate of the corresponding actions. Consequently, they switched to another 



policy that employed the smaller sized mobile table to do the task. Conversely, the 

method without online learning still stuck to the poor policy. It may be readily noted 

that the one with forgetting model had a quicker response to the environmental 

changes when compared to the one based on the average model. In fact this effect is 

more pronounced when more trials are made before the environment changes.  

6 Conclusion 

Given the increasing popularity of the ubiquitous robotic system as a solution offering 

better environmental intelligence, the RMDP model proposed in this work has been 

proved to be suitable for the symbolic planning problems that are especially large-

scale and with uncertainties.  

This result has been achieved by retaining the probabilistic features of the MDP 

model while at the same time decreasing the branching factor of the state transitions. 

A robotic bar-tending task was implemented based on RMDP model and was solved 

using a modified DP algorithm. The experiments demonstrated that the RMDP model 

facilitates online learning, which adapts the model to environmental changes. A “for-

getting” model is employed for this online learning process. The results showed that 

the improved model more accurately matched the real environment and the planning 

results also improved accordingly.  
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