
Integrating kinematics and environment context into
deep inverse reinforcement learning for predicting

off-road vehicle trajectories

Yanfu Zhang∗
Yamaha Motor Co. Ltd.

Wenshan Wang
Carnegie Mellon University

Rogerio Bonatti
Carnegie Mellon University

Daniel Maturana
Carnegie Mellon University

Sebastian Scherer
Carnegie Mellon University

Abstract:
Predicting the motion of a mobile agent from a third-person perspective is an
important component for many robotics applications, such as autonomous navi-
gation and tracking. With accurate motion prediction of other agents, robots can
plan for more intelligent behaviors to achieve specified objectives, instead of act-
ing in a purely reactive way. Previous work addresses motion prediction by either
only filtering kinematics, or using hand-designed and learned representations of
the environment. Instead of separating kinematic and environmental context, we
propose a novel approach to integrate both into an inverse reinforcement learning
(IRL) framework for trajectory prediction. Instead of exponentially increasing the
state-space complexity with kinematics, we propose a two-stage neural network
architecture that considers motion and environment together to recover the reward
function. The first-stage network learns feature representations of the environ-
ment using low-level LiDAR statistics and the second-stage network combines
those learned features with kinematics data. We collected over 30 km of off-road
driving data and validated experimentally that our method can effectively extract
useful environmental and kinematic features. We generate accurate predictions of
the distribution of future trajectories of the vehicle, encoding complex behaviors
such as multi-modal distributions at road intersections, and even show different
predictions at the same intersection depending on the vehicle’s speed.

Keywords: inverse reinforcement learning, trajectory prediction, neural networks

1 Introduction

Most autonomous navigation and tracking applications include interactions with other agents in
the world. If a robot can accurately forecast the motion of external agents, it can plan intelligent
behaviors, instead of having purely reactive interactions. For example, to avoid collisions with other
drivers on a road, an autonomous car should be able to model future trajectories of other vehicles,
and a robot manipulator that interacts with humans should anticipate a person’s behavior to avoid
dangerous situations.

Typically, the motion prediction problem is addressed using filtering-based methods [1], which use
specific kinematic and observation models to estimate the states of the subject, such as position,
orientation, and velocity. However, predicting the motion of an agent considering only kinematics
is a incomplete model of the true behavior, which also depends on the surrounding environment.
Although human experts can manually design functions that model the agent’s interactions with
objects, this process is usually time-consuming and offers weak generalization to new environments.

Recently, imitation learning based approaches showed the possibility of learning the complex agent-
environment interaction [2, 3]. In particular, inverse reinforcement learning (IRL) techniques can

∗Corresponding author: zhangya@yamaha-motor.co.jp

ar
X

iv
:1

81
0.

07
22

5v
1 

 [
cs

.R
O

] 
 1

6 
O

ct
 2

01
8

zhangya@yamaha-motor.co.jp


Figure 1: Trajectory prediction results on the same environment comparing different speeds. Slow
speeds show stronger multi-modal prediction (a), while a fast vehicle is more likely to just continue
going straight (b). The top-down view shows the trajectory of the past five seconds (red) and ground
truth (white). We compare our method with an extended Kalman filter prediction.

recover a complex reward structure using expert demonstrations, and offer higher robustness to
generalization than manually-designing functions or supervised learning [4]. Although the first IRL
reward structures were linear [5, 6, 7], recent work [3, 8] improved the reward model complexity.

A challenge in IRL comes from the choice of representation of the agent’s state. Adding more
dimensions to the state such as velocities and higher-order derivatives generally improves the fidelity
of the model, but extra dimensions come with an exponential increase in computation complexity
[9]. Finn [8] used importance sampling to reduce computation time when considering positions and
velocities as the robot state. But in previous IRL work for ground vehicles [3] does not consider
kinematics when computing reward maps, using only position as the state.

Our key insight is that one can lower the exponential complexity increase of incorporating kinemat-
ics into the state-space if kinematic data is used instead during feature extraction. We offer three
major contributions: 1) We propose an improvement on existing deep IRL frameworks, incorporat-
ing both kinematic and environmental context to predict trajectories from raw sensory input; 2) We
train and verify the proposed method on a custom off-road driving dataset; 3) We qualitatively and
quantitatively compare our prediction results with baseline methods such as extended Kalman filters
(EKF) and direct behavior cloning (BC).

2 Related work

The problem of predicting an agent’s motion can be approached using different frameworks de-
pending on the system’s objective. A Kalman filter estimates linear and angular velocities, then
forward-propagates the motion [1]. The filter ignores environmental context, and provides a uni-
modal distribution over the space of possible trajectories. To model the agent’s interactions with
objects in the world, different methods manually design cost functions [10, 11, 12]. However, to
overcome the issue of human fine-tuning and low generalization, one can explore the idea of imita-
tion learning.

BC methods to model driving date as far back as 1989, when Pomerleau [13] used supervised learn-
ing to map the current first-person image from a car to the desired steering angle, and methods
improved significantly over time [14]. A drawback of BC is that in practice it is based on supervised
learning with non-i.i.d samples due to the sequential aspect of data, therefore matching the training

2



and test set distributions can be a challenge, hindering generalizability [4], despite techniques like
DAgger [15] are developed to mitigate this problem.

IRL can be used to improve generalization of a policy. IRL’s objective is to recover the reward func-
tion that the agent optimizes [4]. While early work on IRL modeled rewards as linearly dependent
on features [5, 6, 7, 2], more complex models followed [8, 16, 17, 3].

Closest to our work, Wulfmeier et al. [3] use a neural network to model the mapping from sensor
measurements coming from expert driving demonstrations to a reward map. A motion planner can
then use the reward map to generate a path between desired start and goal locations. However, this
approach ignores the role of dynamics in the forecast, considering only positions in the state-space.
Adding extra dimensions to the state exponentially increases computational complexity for the task
[9]. Thus, the training process slows down significantly and requires larger amounts of demon-
strations for converge of a policy. Finn [8] attempts to overcome complexity by using importance
sampling to compute state visitation frequencies from the learned policy. In this work, however, we
argue that kinematics can instead be successfully used in the feature extraction process. Therefore,
we propose a non-linear reward model that depends on both kinematics and environmental features,
while keeping a small state-space dimension.

3 Approach

We frame the problem of vehicle trajectory prediction with max-entropy IRL [7]. In order to incor-
porate both environment and kinematic context, a two-stage convolutional neural network (CNN)
architecture is utilized to approximate the underlying reward function.

3.1 Problem formulation

Our objective is to learn to predict the target’s future path ζ or probability distribution of future path
p(ζi). We use a set of demonstration trajectories D = {ζ0, ζ1, ...ζm}, which are collected in various
environments. The trajectory ζ is defined as a sequence of states (s0, s1, ..., sn), where s = (x, y)
represents the target’s 2D location in world frame. Each state s contains features φ(s), obtained from
sensory inputs. To predict the trajectory, one can directly estimate the state sequence, or predict the
action sequence (a0, a1, a2, a3), where action a is a discretized motion (up, down, left, right).

In BC, we can find a mapping from state and features to action: π : s, φ(s) 7→ a [4]. In IRL,
however, the goal is to recover the agent’s hidden reward function R(φ(s)), so as to maximize the
probability of the demonstrated trajectories. Once the hidden reward is inferred, the probabilities of
future trajectories can be computed.

3.2 Maximum entropy deep IRL

Here we follow the maximum entropy IRL formulation [7], treating trajectories with higher re-
wards as exponentially more likely. As shown by [3, 8], we approximate the reward function us-
ing a deep neural network R(φ(s)) = f(φ(s); θ). We define the reward of a trajectory ζ as the
accumulative reward over all states in that trajectory R(ζ) =

∑
si∈ζ f(φ(si); θ) Under the max-

imum entropy assumption, we derive the probability of trajectory ζi given the reward function as
P (ζi|θ) = 1

Z(θ)expR(ζi), where Z(θ) =
∑
ζj∈D expR(ζj) is the partition function over all possi-

ble trajectories. Then we try to maximize the following log likelihood of the demonstrated trajecto-
ries [3]:

L(θ) = log
∏
ζi∈D

P (ζi; θ) =
∑
ζi∈D

R(ζi)− logM
∑
ζj

exp(R(ζj ; θ))⇒
∂L(θ)

∂θ
= (µD − E[µ])

∂f

∂θ

Where µD and E[µ] are the state visitation frequencies (SVF) from the demonstrated trajectories and
from the inferred reward function respectively. After the reward network update, we use standard
value iteration to solve the forward RL problem in the loop, as shown in Alg. 1. During value
iteration, to speed up the convergence rate we artificially increase the probability of the most likely
action being chosen, in what we call annealed softmax in Alg. 2.

3



Algorithm 1 Deep maximum entropy IRL with two-stage network architecture
Input: D, S, A, T, γ, α
Output: network parameters θ

1: Initialize network parameters θ randomly
2: for iteration i = 1 to N do
3: sample demonstration batch Dbatch ⊂ D
4: Ri(φ(s))← f(φ(s); θi) for ∀s ∈ S . Forward reward network
5: πi ← value iteration(Ri, S,A, T, γ) . Planning step
6: E[µi]← compute svf(πi, S,A, T )

7:
∂L(θ〉)
∂R ← µD − E[µi] . Gradient calculation

8: θi+1 ← back propagate(f, θi,
∂L(θ〉)
∂R , α) . Parameter update

9: return θ

Algorithm 2 Value iteration
Input: R, S, A, T, γ
Output: π

1: Initialize values V (s) = − inf
2: repeat
3: Vt(s) = V (s) . No hard reset for V (sgoal)
4: Q(s, a) = r(s, a) + ET (s,a,s′)[V (s′)]
5: V (s) = max(Qi(s, a))
6: until maxs(V (s)− Vt(s)) < ε
7: return π(a|s) = annealed softmax(Q(s, a))

3.3 Incorporating kinematics into the reward: two-stage network architecture

Intuitively, when humans predict vehicle motion from a third-person perspective we primarily reason
about two aspects: the surrounding environment and the vehicle’s motion so far. We implicitly
evaluate traversability of the terrain, the location of obstacles, and extrapolate the past vehicle motion
to infer where turning will be necessary and/or possible. If given enough observations, we can even
infer more subtle cues such as driver preferences and a specific motion model for the vehicle.

Inspired by this intuition, we designed a two-stage network architecture to reason about environ-
mental and kinematic context when computing rewards (Figure 2). In the first stage, we adopt a
four-layer fully convolutional network (FCN) [18] structure which takes colored point cloud statis-
tics as inputs, and outputs features extracted purely from the environmental context. Instead of using
encoder-decoder approaches [18, 19, 20], which inevitably lose spatial information due to the down-
sampling stages, we adopt dilated convolutional layers, which systematically aggregate multi-scale

Figure 2: Proposed two-stage network architecture and training procedures. Environmental context
is the input to the first-stage network, and the resulting feature maps are concatenated with the
kinematics context. The reward approximation is the output of the second-stage network, and the
SVF from the learned policy is used to compute gradients for backpropagation.

4



context without losing spatial information [21]. The approximate receptive field of our dilated net-
work is 20 × 20 pixels, which we estimated to be sufficient to extract the relevant environmental
context. The final output of the dilated network is 25 feature maps, a number experimentally ob-
served to contain sufficient information representing spatial context without excessive redundancy
and sparsity.

As inputs to the second stage, we concatenate the output from the first stage with two feature maps
encoding positional information and three feature maps representing kinematic information from
the past trajectory, as follows. The first two feature maps encode, for each grid cell, the x and y
position of the grid cell in a vehicle-centered, world-aligned frame. These feature maps are inde-
pendent of the trajectories, but convey absolute position information to FCN, which is translation-
invariant2. Then, for each training sample, past trajectory information is encoded with three feature
maps φe(ζ) = [∆x,∆y, κ]. ∆x and ∆y represent the vehicle’s past velocity, discretized to the four
cardinal directions, and with a normalized magnitude proportional to its absolute speed. κ encodes
the trajectory curvature, which is related to angular velocity. [∆x,∆y, κ] are estimated from the
past five seconds of vehicle motion and respectively constant across the whole feature map. Finally,
they are empirically normalized to a small finite range to aid training stability. More implementation
details can be found in Appendix.

4 Experiments

In this section we present our approach for dataset collection, baseline design, definition of metrics,
prediction results, and discussion on learned results.

4.1 Off-road driving dataset collection

The off-road driving dataset was collected in a test site with roughly 400 acres involving more than 5
different drivers. The vehicle platform, a modified All Terrain Vehicle (ATV), is shown in Figure 3.
A total of over 1000 trajectories are included for the dataset, with average length about 20-40 m
long, in about 30 km of driving demonstrations.

Figure 3: Vehicle platform, along with satellite view of the off-road course used for about 30 km of
data collection.

For each demonstration we create a high-precision, colored local point cloud map. We then convert
the point cloud into a 2D grid with statistics for each cell: maximum height, height variance, and
mean RGB values, and extract the vehicle past trajectory and ground truth prediction using high
precision RTK-GNSS/INS which can provide position data with centimeter level accuracy.

The reason behind our choice of features is that in off-road environments, a combination of geome-
try and color statistics can provide useful information regarding terrain traversability. For example,
one can intuitively categorize regions with high variance in height to be rough and non-traversable.
However, combining geometry with color can be even more informative: an area that is simultane-
ously rough but light green is probably just a region of tall grasses, over which the vehicle can easily
drive. An example of data from our dataset of demonstrations is shown in Figure 4.

4.2 Metrics and baselines

We employ two metrics for quantitative evaluation: the Negative Log-Likelihood (NLL) of the
demonstration data and the Hausdorff Distance (HD) [2]. The NLL metric computes the log-

2An alternative way of encoding absolute spatial position would be using a fully-connected network, but
this will result in a substantial increase in the number of parameters.

5



Figure 4: Visualization of all channels of the input to the reward network. a) Maximum height, b)
Height variance, c) RGB, d) Third-person view of the environment (not an input). Red indicates
the trajectory history, which is used to compute kinematic features, and ground truth future path is
shown in white.

likelihood of the demonstration trajectory ζ under the learned policy π(a|s). We normalize NLL
by the demonstration trajectory length. The HD metric represents a spatial similarity between ex-
pert demonstrations and trajectories sampled with the learned policy. To compute it, we use the
average HD between the demonstration trajectory and 1000 trajectories randomly sampled from the
learned policy.

We selected three baseline methods for comparison: 1) EKF with a kinematic bicycle model; 2) BC
technique that uses supervised learning to learn a policy mapping both environment and kinematic
inputs to an action; and 3) deep IRL method considering only environment input to compute features,
with no kinematics.

4.3 Trajectory prediction results

Qualitative evaluation

We show key experimental results in Figure 5, and a graphical comparison with baselines in Figure 6.
We verify that the forecasts based on the inferred reward map, match the expected behaviors of a
human driver, with trajectory probabilities concentrated on trails or traversable paths. In addition,
multi-modal behaviors are present at intersections and when approaching open areas.

In Figure 1 we see how the trajectory prediction behaves on the same environments, for different
agent kinematics. Our predictions are surprisingly intuitive: at low speed the forecast shows higher
likelihood of taking turns at an intersection, while at high speed it predicts that the vehicle will
probably keep driving straight along the trail. More visualizations can be found in the demo video3.

Quantitative evaluation

3https://github.com/yfzhang/vehicle-motion-forecasting

Figure 5: Time-lapse of inferred reward map and trajectory forecast distributions in an off-road trail
test set. Forecasts remain on trails, and show multi-modal distributions at intersections.

6

https://github.com/yfzhang/vehicle-motion-forecasting


Figure 6: Comparison of trajectory predictions for different baselines in test set. The EKF ignores
any environmental context, and behavior cloning fails to learn a policy that avoids obstacles. Without
kinematic features, deep IRL has no notion of where the vehicle is going, and just forecasts a diffuse
motion on the large open section of trail around the actor’s position. Our method is able to capture
both kinematics and environmental cues, inferring multiple plausible paths.

We compare our method with four baselines in the off-road driving dataset, shown in Table 1. Our
method has the best prediction results on the test set using both metrics. We observe that the EKF
obtains surprisingly good results for HD; we believe that this is due to a relatively large proportion
of straight or near-straight trajectories in the dataset, which EKF can predict well. We also observe
a comparatively poor performance of Deep IRL without kinematic features. Examination of the
predictions suggests that without past kinematic context, in many open scenarios this method can
only predict diffuse, highly uncertain future motions, as shown in Fig. 6. On the other hand, our
method, which can exploit both environmental and kinematic context, obtains the best results.

Method EKF Behavior cloning Random Deep IRL without kinematics Ours
NLL N.A. 0.87 1.35 1.33 0.69
HD 9.12 10.54 25.62 25.46 6.71

Table 1: Prediction performance comparison on the test set using NLL and HD. For both NLL
and HD, lower numbers represent better predictions. Our method obtains the best results in both
evaluation metrics.

4.4 What is learned?

We try to build an understanding of what is being learned by plotting representative outputs from
different stages of the network. Shown in Figure 7, the first-stage is network apparently encoding
the traversable trail based on colored point cloud input. Shown in Figure 8, the second stage of
the network learns an effective forward motion model of the car with an uncertainty cone roughly
oriented towards the direction of motion.

5 Discussion and future work

In this work we proposed and validated a deep IRL approach that integrates kinematic and envi-
ronmental context to learn a reward structure for driving predictions in off-road environments. We
show that our approach out-performs baselines such as EKF, BC, and a deep IRL approach without
considering kinematics.

Our two-stage network architecture used for the reward approximation can mitigate the compu-
tational complexity of adding kinematics as extra dimensions to the state-space; we instead add
kinematics in the feature extraction process. Based on our findings, we see future work in a few
directions:

Dynamic environment: Our current approach can not handle dynamic environment which contains
other moving agents, such as pedestrians and other vehicles. As an extension to the current frame-
work, we can take a history of visual and LiDAR data as the environmental input and this temporal
information can be used to infer the motion of additional moving agents in the environment. A re-
current network probably can fuse this sequential information and approximate the reward structure.

7



Figure 7: Visualization of select feature maps from the first-stage network output. Features 1-3 have
dense output patterns that visibly correlate to the trail region. Features 4-5 show a relatively sparse
output, possibly encoding specific LiDAR statistics.

Figure 8: Visualization of trajectory probabilities with and without environment context. The first
row shows past trajectories (red) and ground-truth (white). The second row shows predictions using
our method where LiDAR features were replaced by a constant value in all cells, and we can compare
with predictions that incorporate both kinematics and environment in the third row. The network
learns a forward motion model of the car with an uncertainty cone roughly oriented towards the
direction of motion, and that varies with respect to vehicle speed.

Improve kinematics model: Our kinematic features come from a fixed-time window from the past
trajectory. When the driver does a sudden motion, using a fixed-time window is not ideal, because
under sudden movements only a smaller time segment should be considered to forecast where the
vehicle will go. We envision improvements in the second-stage network, where the network can
learn how to select adaptive time windows for prediction, probably using recurrent networks.

8



Acknowledgments

This research is funded by Yamaha Motor Co. Ltd. We thank Lentin Joseph, Masashi Uenoyama,
Yuji Hiramatsu for data collection and the anonymous reviewers for providing feedback.

References
[1] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.

[2] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecasting. In European
Conference on Computer Vision, pages 201–214. Springer, 2012.

[3] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner. Large-scale cost function
learning for path planning using deep inverse reinforcement learning. The International Jour-
nal of Robotics Research, 36(10):1073–1087, 2017.

[4] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al. An algorithmic
perspective on imitation learning. Foundations and Trends R© in Robotics, 7(1-2):1–179, 2018.

[5] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In Pro-
ceedings of the twenty-first international conference on Machine learning, page 1. ACM, 2004.

[6] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings
of the 23rd international conference on Machine learning, pages 729–736. ACM, 2006.

[7] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforce-
ment learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

[8] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International Conference on Machine Learning, pages 49–58, 2016.

[9] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[10] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of robot motion: theory, algorithms, and implementation. MIT press,
2005.

[11] C. Urmson, C. Baker, J. Dolan, P. Rybski, B. Salesky, W. Whittaker, D. Ferguson, and
M. Darms. Autonomous driving in traffic: Boss and the urban challenge. AI magazine, 30
(2):17, 2009.

[12] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, et al. Stanley: The robot that won the darpa grand challenge.
Journal of field Robotics, 23(9):661–692, 2006.

[13] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
neural information processing systems, pages 305–313, 1989.

[14] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[15] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635, 2011.

[16] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems, pages 4565–4573, 2016.

[17] S. Levine, Z. Popovic, and V. Koltun. Nonlinear inverse reinforcement learning with gaussian
processes. In Advances in Neural Information Processing Systems, pages 19–27, 2011.

9



[18] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

[19] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine in-
telligence, 39(12):2481–2495, 2017.

[20] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture
for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

[21] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015.

10



A Additional experimental detail

In this section, we provide additional details for all experiments, including data pre-processing,
baseline implementation, network parameters, and training hyperparameters.

A.1 Data pre-processing

Environment input. We fuse camera data with LiDAR data to generate colored point cloud. For each
demonstration, we create a local 3D point cloud map via registration and further compress it into a
2D grid (80 m × 80 m, with 1 m resolution) with five channels: max-height, height variance, mean
red, mean green, and mean blue.

Kinematic input. We have 5 channels encoding positional and kinematic information. The first
two channels encode, for each grid, the positional information in a vehicle-centered, world-aligned
frame as shown in Figure 9. They provide positional information to convolutional filters and break
translation-invariance. The other three channels encode the kinematic information [∆x,∆y, κ],
which are estimated from the past trajectory as illustrated in Figure 9 and are uniform over the
whole feature map. [∆x,∆y] are calculated on the grid-map and therefore are discretized. They
approximate the vehicle’s past linear velocity. κ is estimated by fitting a least square circle to the
past trajectory and approximates the trajectory curvature, which is related to angular velocity. All
the kinematic input is empirically normalized to aid training stability.

Figure 9: Illustration of the kinematic input. a) and b) are two layers encoding the [x, y] positional
information. They are concatenated with other feature maps to convey positional information to con-
volution and break translation-invariance. c) illustrates how kinematic data [∆x,∆y, κ] is calculated
from the past trajectory which is shown in red.

A.2 Training and implementation details

We implemented the training and inference pipeline using PyTorch 4 and our code and dataset will
be made public available5. We use a 90/10 split to divide our data into training and test sets. We
used the following techniques for training the network:

Data augmentation. Augmenting the demonstration data with different rotations is critical because
the proposed two-stage network is sensitive to directional bias. We wanted to avoid over-fitting to a
particular direction without properly reasoning about kinematics.

Demonstration distribution. The network tends to overfit to straight line predictions if the majority
of the demonstrations are straight as well, sometimes ignoring environmental features. Therefore
we balanced the distribution of types of trajectories, such as straight lines, small and large curves.

Simulated annealing. To improve convergence during training time, we artificially increased the
probability of the most likely action being chosen.

Training in parallel. Since for every training iteration, RL needs to be performed to compute the
gradients, we implemented parallel computation of gradients for each batch of demonstrations. We
used batches size of 16 demonstrations. Batch training proved in practice to be more stable than
using gradients based on single demonstration.

4https://pytorch.org/
5For code and dataset, see https://github.com/yfzhang/vehicle-motion-forecasting

11

https://pytorch.org/
https://github.com/yfzhang/vehicle-motion-forecasting


A.3 Baseline details

For all learning-based baselines, we set all training hyperparameters the same as those used in our
method, and stop training when it starts to show overfitting in the validation set.

Deep IRL without kinematics. We removed the second-stage and kept the first-stage the same as
the original network design in our approach. Therefore, there is no kinematic data used in training
and testing. The results is as expected that it predicts a distribution concentrated in the path, but
diffused over all directions compared to our approach. Because of this omnidirectional diffusion,
the quantitative evaluation score of this baseline is very low. The reason why deep IRL without
kinematics work for the prior work [3] is that a explicit goal state can be provided in the motion
planning problem setting. In both training and testing phases, the value of the goal state can be
hardly reset and pulls the optimal policy towards that direction. However, in our problem setting,
the aim is to predict the future motion in a finite-time horizon, and there is no explicit goal state.

BC. We kept the network architecture the same as that in our approach. But instead of outputting
the reward values, we set the last layer to output four channels and add a softmax layer. Therefore,
the final output becomes the policy and contains the probabilities of four different actions. The
network input is also the same as our approach and contains both environment (LiDAR + RGB) and
kinematic data.

EKF. We adopted an EKF with kinematic bicycle model for state estimation. We use the vehicle
position [x, y] observed in the past trajectory as the measurement input and implicitly estimates the
vehicle’s linear and angular velocity. During the predication phase, we assume the vehicle’s linear
velocity and front steering angle is unchanged. In the experimental results, we observed that EKF-
based prediction performs well when the demonstration trajectory is near-straight or has a constant
curvature.

12


	1 Introduction
	2 Related work
	3 Approach
	3.1 Problem formulation
	3.2 Maximum entropy deep IRL
	3.3 Incorporating kinematics into the reward: two-stage network architecture

	4 Experiments
	4.1 Off-road driving dataset collection
	4.2 Metrics and baselines
	4.3 Trajectory prediction results
	4.4 What is learned?

	5 Discussion and future work
	A Additional experimental detail
	A.1 Data pre-processing
	A.2 Training and implementation details
	A.3 Baseline details


