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As themanufacturing tasks becomemore individualized andmore flexible, themachines in smart factory are required to do variable
tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing
systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory.
Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous
robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a
hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It
demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve
large problems intractable with flat methods.

1. Introduction

As the ear of Industry 4.0 comes, industrial robots are no
longer the preprogrammed robots setting separately doing
their repeating jobs [1, 2]. As the manufacturing tasks
becomemore individualized andmore flexible, it shows great
prospect to develop smart manufacturing systems, where
machines are not likely to be preconfigured by traditional
teaching methods, but doing variable tasks and coping with
a wide variety of unexpected environmental and operational
changes.The futuremanufacturing industry also requires that
the system could dynamically schedule the tasks for these
machines according to their work loads and the received
tasks.

This feature of doing various tasks utilizing collabora-
tion of distributed devices shares common ideas with the
ubiquitous robotic technology, which is mainly applied in
service robots domain [3]. In this perspective, the novel
industrialmanufacturing system could take advantages of the
ubiquitous robotic technology.

In a typical ubiquitous robotic system, robotic devices are
developed into modules [4–6]. These modules are connected
through network, enabling data sharing and functionality
calling. This modularized framework, which brings painless

modification, expansion, and deletion, could also be applied
to the smart manufacturing domain. We propose in this
paper a framework of smart factory that takes advantage of
a component based method, which abstracts each machinery
process as amodule with standardized communication ports.
So differentmachines are able to communicate and cooperate
with each other upon these ports.

Another important issue of ubiquitous robotic systems is
the development of a task level learning and planningmodule
that handles various tasks and dynamic environment without
recoding the robots [7, 8]. This is also critical for smart
factories, where there may be a variety of orders and different
situations for each order. For example, in a future smartphone
assembly factory, customers could make highly customized
orders, such as individualized color, button shape, and cover
material. The manufacturing process could be varied from
order to order. In addition, it should take processing failures,
human interferences, order changes, and other uncertainties
into consideration. As a result, the task planning module
for large-scale problems with uncertainty shows great impor-
tance.

Compared to the ubiquitous robotic systems, the task
planning in industrial domain is even more challenging due
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to its larger planning space. For example, even in a small
and medium factory, there could be dozens of machinery
process and the planning space grows exponentially. Notice
that human solves tasks in a hierarchical way, and fortunately
most tasks in industrial domain have hierarchical structures.
As a result, the large task can be divided into a task tree
consisting of small subtasks, which can be solved more effi-
ciently. Furthermore, some subtasks are reusable among up
level tasks. In this study, a hierarchical task planning method
is proposed to improve the planning efficiency.A study case of
the smart assembly line is implemented as a demonstration
platform for our methods.

2. Related Works

Many existing studies on smart factory focus on how to
integrate RFID into the manufacturing system to collecting
more data [9–11]. The manufacturing is smarter by tracking
the processing information. We argue that it would achieve
higher flexibility and intelligence if connecting not only
the production but all the machinery processes. So differ-
ent robotic devices could collaborate into different groups
according to different tasks.

The ubiquitous robotic technology is widely studied these
years. A number of frameworks have been proposed [12–14].
Recently, more efforts have been made on task level planning
and learning technologies. The task planning methods for
suchmultiagent systems could be categorized into centralized
planning and decentralized planning. Decentralized plan-
ning methods are mainly applied to loosely coupled prob-
lems such as multi-UAV environmental monitoring [15] and
cooperative mapping and localization [16]. As the individual
machinery processes are highly coupled in manufacturing
tasks, we prefer the centralized planning method.

Themost commonly employed centralized techniques are
based on automated planning in Artificial Intelligence. Ha
et al. used SHOP2 planner to decompose services based on
semantic knowledge [12]. Erdem et al. presented an appli-
cation of answer set programming to housekeeping robotics
[17]. Niemueller et al. approached the task planning problem
by deploying a rule engine [18].These planningmethods can-
not deal with dynamic situations with uncertainties as is the
case in the real world. In response to this, some researchers
have used probabilistic models in task planning problems.
For example, Barbosa et al. used Partially ObservableMarkov
Decision Processes (POMDP) to model the tasks with uncer-
tainty [19]. Cirillo et al. implemented RTL plan for probabilis-
tic domains [20]. Planning methods based on probabilistic
models such as Markov Decision Process (MDP) model
and POMDP model can handle nondeterministic problems
but at significant cost. They suffer dimension explosion,
which limits the size of the state space to impractical appli-
cations.

The researches of MDP planning methods for large prob-
lemsmainly consist of two kinds, the state approximation and
hierarchical planning. The former has considerable difficulty
in applying to general purpose planner discussed in this
study. So we focus on the hierarchical planning methods.

The efforts of achieving the hierarchical planning ofMDP
problems are divided into two parts: first, how to automat-
ically generate the hierarchical structures [21, 22]; second,
how to develop planning algorithms to solve subproblems
introduced by the hierarchical structure [23, 24]. Sutton et
al. [25] used options to temporally abstract knowledge based
on Semi-Markov Decision Process (SMDP) theory. Parr [26]
developed an approach to hierarchically structuring MDP
policies called Hierarchies of Abstract Machines. Dietterich
[23] developed another approach called the MAXQ Value
Function Decomposition. These methods assume the hierar-
chy is predefined by human experts. For the automatic task
decomposition problem, Hengst [27] proposed the HEXQ
approach for the construction of a hierarchy of abstractions
based on the change frequency of state variables. Jonsson
[28] proposed the VISA approach for decomposing factored
MDPs based on causal relations between variables. Kherad-
mandian and Rahmati [21] incorporated and represented the
ability of data mining techniques in automatic discovering of
structures and patterns. Most of these methods are based on
statistic methods that try to learn the critical states as the sub-
goals. This learning process is time consuming and does not
have any optimality guarantees. We followed the research of
Hengst and Jonsson, who generate the task hierarchy depend-
ing on state variables.We improve Jonsson’s work by abstract-
ing hierarchical options instead of searching for exits. Conse-
quently the optimality is improved from recursively optimal
to hierarchically optimal.

3. System Architecture

In contrast to traditional manufacturing processes, the smart
manufacturing offers the advantage of distributed networked
machines to complete different tasks through collaboration.
The framework for smart factory is designed as in Figure 1.

In the low level, the robotic devices are developed into
components that they can “plug and play” in the system and
be reused and reconfigured according to different manufac-
turing process. These components are the foundation of the
system.Asmentioned, robotic components are highly hetero-
geneous with respect to platforms such as operating system,
programming language, and communicationmedia. Middle-
ware is thus employed to generalize the components into a
uniform abstraction which enables dynamic communication
and coordination between any two of the modules [29]. This
also brings benefits to themodification of existing devices and
the expansion of new ones.

In the middle level, a number of functionalities are
developed in the internal cloud, such as the human-system
interface, storage management, task planning, virtual manu-
facturing, and big data collection.The customer orders prod-
ucts through a human-system interface. The order includes
customized requests, for instance, the favorite color and
shape of the parts and whether the parts are being polished
and so forth. These orders are sent to the task planning
module, which also utilizing the information from the storage
management module. The planner is the key part of the
system’s agility and intelligence. It turns customers’ orders
into subtask sequences, which can be directly carried out
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Figure 1: System architecture of the smart factory.

by corresponding robotic components. It is a general pur-
pose planner based on Reduced Markov Decision Process
(RMDP) model, which will be detailed later.

In the upper level, there are manufacturing execution
system, sale management system, and design support system.
These are all critical part of the industrial production process.
This paper will not get into details of these big systems but
mainly focus on the task planning module and the compo-
nent based technology.

4. Component Based Machinery Process

Components use ports to communicate with each other and
with high level controller. The ports are categorized into data
ports and service ports [30]. The data port is responsible
for the continuous exchange of data. Each component can
have any number of data in-ports and out-ports. A data
out-port sends the data to a corresponding in-port which

receives the data. The service port provides the command
based communication. The component with a service port,
offering a set of services, listens for requests for those services
via a connector.

Each component has three service ports, namely,
FuncGet, FuncSet, and ExeStatusGet. The service port is
responsible for the interaction with the upper layer. FuncGet
port reports to the service layer about the components’
state. For example, the polishing robot reports the available
polishing configuration; the Autonomous Intelligent Mobile
Manipulator (AIMM) reports its states including its
coordinates, whether the manipulator is empty, and battery
level. FuncSet port provides the functionality invoking, such
as setting the target position for theAIMM, starting polishing
with certain configuration, and so forth. ExeStatusGet port
returns the execution status, for example, whether or not the
AIMM has reached its destination, or whether the polishing
robot succeeds or fails in doing the task.
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Each component may have any number of data ports
for continuous data exchange between components. For
instance, the localization information is transferred from
the data out-port of laser component to the data in-port
of the path planning component. Once two data ports are
connected, those two components are able to perform real-
time communication to accomplish the task collaboratively.

The individual robotic functions are also critical to the
system’s intelligence.The traditional industrial robots are like
blind and deaf muscles repeating some predefined motions.
In the smart factory, robotic components are capable of sens-
ing the environment andmaking decisions in optimization of
resources and time. Some of the robotic components in our
system are shown in Figure 2.

There are five 3D printers with materials in different
colors, one dual-arm robot for polishing, one assembling
robot, and one AIMM. The AIMM is equipped with laser
sensor for localization and obstacles avoiding. Other software
components such as localization, path planning, and object
recognition are also implemented.

4.1. Polishing Component with Auto Path Generation. Tradi-
tionally, the polishing path is taught by the expert engineers.
This teaching process could be complex and tedious. In our
smart factory, the polishing path is automatically generated
from the CAD data (Figures 3(b) and 3(c)). Then, the robot
follows this path by a motion planning algorithm with
collision avoidance (Figure 3(d)). Besides, the polishing area
is easy to specify with a user-friendly GUI as in Figure 3(a).

4.2. AIMM Component. AIMM is responsible for the trans-
portation task that transports parts and work pieces between
workstations and storages (Figure 4). Such transportation
tasks contain physical separation larger than the workspace
of the robot manipulator. This requires a lot of technologies
such as object recognition, grasp point generating, motion
planning, localization, and path planning. It uses RGB-D
camera to do the object recognition and obstacle avoidance
and uses laser sensor to do the localization.

4.3. Assembling Component. The assembling robot also has
the sensing capbility (Figure 5). It grasps the working parts
by online detecting the location and orientation. The visual
detection is based on templatematchingmethod and is able to
recognize complex shape with localization error below 1mm.
We also employ a motion planning and motion controlling
module for assembling and obstacle avoiding.

5. Hierarchical Task Planning

The challenges of task planning for smart factory domains
are introduced by their large problem size and uncertainty.
This study follows the techniques of automated planning
derived from the AI field. Firstly, a task model called RMDP
model is proposed. This model is designed for describing
problems with large size and limited uncertainties such as
smart factory. Secondly, the relations of variables are analyzed
based on this model. The relations are depicted by the causal
graph. Thirdly, according to the causal graph, the original
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Figure 3: (a) Configuring the polishing area, (b) auto-generating the polishing path, (c) path generation and tool simulation, and (d) motion
planning and polishing with dual-arm robot.

Figure 4: AIMM is picking up a working part form the warehouse.

actions are hierarchically abstracted into options, which
induce smaller subproblems. At last, the subproblems and the
original problem are solved based on Semi-MDP theory.

5.1. Task Modeling Based on Multivalued State Variables.
The task planning problem is modeled as a state transition
system. Depending on different assumptions, various models
are proposed. The two most commonly used models are
the classical planning model and the MDP model. However,
the classic model cannot deal with dynamic situations with
uncertainties as is the case in the real world.TheMDPmodel
supports nondeterministic actions and dynamic situations,
but it scales poorly to large problems.

We propose the RMDP model by making the following
assumption in line with the manufacturing domains. It is

assumed that, after actions are executed by robotic compo-
nents, the outcome could be among a few predictable states,
which are the successful state and a few failed states. This
assumption simplifies the MDP model by decreasing the
branching factor of the state space. In addition, the model is
designed based on multivalued state variables, which is more
compact and natural compared to the propositional based
models. This is important for the following variable analysis.

Definition 1. RMDP model is defined as a five-tuple Π =

(𝑉,𝐷, 𝐴, 𝐼, 𝐺):

(i) 𝑉 = {V
1
, V
2
, . . . , V

𝑛
} is a finite set of state variables;

(ii) 𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} is a finite set of variable domains,

each V
𝑖
∈ 𝑉 with a finite domain 𝑑

𝑖
∈ 𝐷. 𝑉 and

𝐷 define the planning space 𝑆, where state 𝑠 ∈ 𝑆 is
represented as a vector [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
], where 𝑥

𝑖
∈ 𝑑
𝑖

is the value of variable V
𝑖
;

(iii) 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} is a finite set of actions;

each 𝑎
𝑖
∈ 𝐴 is a triple (pc, ef , 𝑐) referring to the

action’s preconditions, effects, and cost, respectively.
The preconditions of action 𝑎 are defined with a
list [pc

1
, pc
2
, . . . , pc

𝑗
], where pc

𝑖
= (V, 𝑥) denotes

that the value of variable V should be 𝑥 to satisfy
the precondition. The effects of action 𝑎 are defined
with an effect list [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑘
], where 𝑒

𝑖
= (𝑝, V, 𝑥)

denotes that the variable V will change its value to 𝑥
with probability 𝑝, after the action’s execution. Each
action has a cost 𝑐, which acts like a reward function
in MDP model;
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(iv) 𝐼 ∈ 𝑆 denotes the initial state;
(v) 𝐺 ⊆ 𝑆 denotes the set of goal states.

The demonstrating task in this study is shown in Figure 6.
As described in Section 4, the smart factory in our study
case includes 3D printers, polishing robot, assembling robot,
and AIMM. This task is designed according to the physical
system in our laboratory, which will be detailed in the
next section. One workstation of painting robot and one
Automatic Guided Vehicle (AGV) are added to increase the
complexity. Detailed task description is shown in Tables 1 and
2.

These actions in Table 2 are grounding actions. There
are too many grounding actions to be defined by hand.
In practice, the actions are defined in lifted manner. For
example, there are 28 “Move” actions in total, 14 for AIMM
and 14 for AGV. These 28 actions are presented by one lifted

“Move” action: Move(Robot, Location, Location), where the
action is parameterized with variable types “Robot” and
“Location”. The lifted actions are compiled to the grounding
actions in a preprocessing stage.

5.2. Variable Dependency Analysis. Notice that there are
dependencies between different variables. For example,
according to the “pickup” action, the change of value
of “part1 loc” is dependent on the value of “AIMM loc”.
According to “polish” action, the change of value of
“polished part1” is dependent on the value of “part1 loc”. We
depict these dependencies by a causal graph, following the
work of Helmert [31] and Jonsson [28].

Definition 2. The causal graph of ∏ is a directed graph
CG(∏) with vertices 𝑉cg and an arc(𝑢, V) whenever there
exists an action 𝑎 ∈ 𝐴 so that either (i) there exists 𝑎 ∈ 𝐴
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Table 1: Variable 𝑉 and domain𝐷 in the smart factory task.

Variable Domain

1 AIMM loc
loc1, loc2, . . ., loc8,

printer spot, store spot, . . .,
painter spot

2 AGV loc
loc1, loc2, . . ., loc8,

printer spot,
store spot, . . .,painter spot

3 AIMM hand empty true, false
4 part1 loc AIMM, AGV, printer spot,

store spot, assembler spot,
polisher spot, painter spot

5 part2 loc
6 part3 loc
7 part1 color

red, blue, black, white8 part2 color
9 part3 color
10 part1 polished

true, false11 part2 polished
12 part3 polished
13 assembled p1 p2 true, false
14 assembled p1 p3 true, false

so that 𝑢 ∈ 𝑎(pc) and V ∈ 𝑎(ef) are both defined, or (ii) there
exists 𝑎 ∈ 𝐴 so that 𝑢 ∈ 𝑎(ef) and V ∈ 𝑎(ef) are both defined.

The causal graph is independent of the initial state and
goal state. As a result, it can be calculated offline. The causal
graph of the example task is shown in Figure 7(a), where
each circle represents a variable associated with Table 1. If we
add one more AGV and three more parts to the factory (the
variables are listed in Table 3) and the causal graph is shown
in Figure 7(b), the associated algorithm is as Algorithm 1
shows.

The causal graph reflects the structure of the planning
problem. The overall task is decomposed according to the
causal relations of variables.

If the causal graph is acyclic, the decomposition is
very intuitive. The task can be decomposed into the same
structure as the causal graph. Then the task could be solved
hierarchically.However,most tasks have a cyclic causal graph,
such as in Figure 7. In these cases, we find out all the
strongly connected components (SCCs) in the causal graph
and combine the variables in each SCC. As a result, the
task of Figure 7(a) is decomposed as in Figure 8. Because
the V
7
–V
14

in the high layer all have very small domain size,
we combine them in one layer. Because these SCCs do not
have interdependencies, the combination will not change the
number of subtasks, but only for structural simplicity.

Given the task structure, the task is able to be solved
hierarchically from low layer to the high layer. This process
is divided into two phases called iteratively.These two phases
are abstracting options and solving Semi-MDP, which will be
detailed in the following two sections.

5.3. Hierarchical Option Causal Abstraction. Given the hier-
archical structure, one of the key problems is to find the

(1) CG = (𝑉cg, 𝐸cg), where 𝑉cg = 𝑉, 𝐸cg = ⌀
(2) for each 𝑎 ∈ 𝐴:
(3) for each 𝑢 ∈ 𝑎(pc):
(4) for each V ∈ 𝑎(ef):
(5) if 𝑢 ̸= V then add 𝑒 = (𝑢, V) to 𝐸cg
(6) endfor
(7) endfor
(8) for each 𝑢 ∈ 𝑎(ef)
(9) for each V ∈ 𝑎(ef):
(10) if 𝑢 ̸= V then add 𝑒 = (𝑢, V) to 𝐸cg
(11) endfor
(12) endfor
(13) endfor

Algorithm 1: Calculate causal graph.

reusable subtasks. So the original problem could be decom-
posed into the combination of these subtasks. We propose
an algorithm called Hierarchical Option Causal Abstraction
(HOCA). In general, the actions are abstracted into hierar-
chical options based on causal relations. Each option induces
a subtask that could be solved offline.The planning efficiency
is remarkably improved using these options instead of the
primitive actions. Options are used for the generalization of
temporally extended primitive actions by Sutton et al. [25].
In their work, options are designed by human expert. This
term ismodified in this study in order to enable the automatic
abstraction.

Definition 3. An option is a four-tuple 𝑜 = (fa, pc, 𝛽, 𝜋),
where

(i) fa denotes the father option of 𝑜;
(ii) pc is the preconditions of option 𝑜, similar with the

action’s definition;
(iii) 𝛽 is the set of goals of option 𝑜, each “var-value” pair

(V, 𝑥) ∈ 𝛽 requiring that the goal value of variable V is
𝑥;

(iv) 𝜋 : 𝑠 → 𝑜 is the policy for this option, which is
calculated by the method detailed in the next section.

Definition 4. The option hierarchy derived from action 𝑎
is represented as 𝐻𝑎 = {𝑜

𝑎

0
, 𝑜
𝑎

1
, . . . , 𝑜

𝑎

𝑚
}, where 𝑜𝑎

0
=

([ ], 𝑎(pc), 𝑎(ef), [ ]) is directly converted from action 𝑎, and
∀1 < 𝑘 ≤ 𝑚, there is 𝑜𝑎

𝑘
(fa) = 𝑜𝑎

𝑘−1
.

To automatically generate options, we define the precon-
ditions of the action as a subgoal based on the causal relations
of the variables. This subgoal is solved within an abstracted
state space, which is much smaller than the original space.
Through this process, a primitive action is abstracted into an
option, which could be further abstracted into higher level
options. These options derived from action 𝑎 form an option
hierarchy as Definition 4.

Practically, in each layer 𝑘, we further define the abstract
option (ABO) and active option (ACO). Each ABO derives a
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Table 2: Some of the actions in the smart factory task.

Action Precondition Effect Probability

Move AIMM loc1 loc2 AIMM loc = loc1
{AIMM loc = loc2} 0.85
{ } 0.1
{AIMM loc = printer spot} 0.05

Move AGV loc3 loc5 AIMM loc = loc3

{AIMM loc = loc5} 0.85
{ } 0.05
{AIMM loc = loc2} 0.05
{AIMM loc = store spot} 0.05

Pickup AIMM store part1
AIMM loc = store spot
part1 loc = store spot
AIMM hand empty = true

{part1 loc = AIMM, AIMM hand empty = false}
{ }

0.9
0.1

Putdown AIMM painter part3
AIMM loc = painter spot
part3 loc = AIMM
AIMM hand empty = false

{part3 loc = painter spot, AIMM hand empty = true} 1.0

Putdown AIMM printer part2 AGV

AIMM loc = printer spot
AGV loc = printer spot
part2 loc = AIMM
AIMM hand empty = false

{part2 loc = AGV, AIMM hand empty = true}
{part2 loc = printer spot, AIMM hand empty = true}

0.9
0.1

Polish part1 part1 loc = polish spot
part1 polished = false

{part1 polished = true, part1 color = white}
{ }

0.8
0.2

Paint part1 red part1 loc = paint spot {part1 color = red}
{ }

0.9
0.1

Assemble p1 p2
part1 loc = assemble spot
part2 loc = assemble spot
assembled p1 p2 = false

{assembled p1 p3 = true}
{ }

0.95
0.05
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Figure 7: Causal graphs of smart factory tasks.

hierarchical option in layer 𝑘, while ACO is used for solving
the Semi-MDP, which will be detailed in the next section.
Assume the hierarchical structure is Ζ = {𝑉0, 𝑉1, . . . , 𝑉𝐿};
𝑉
𝑘 represents the set of variables in the 𝑘th layer. Define

𝑉
𝑘−
= ⋃
𝑘

𝑖=1
𝑉
𝑖 as the union of the variables in layer lower

than or equal to 𝑘. Define 𝑉𝑘+ = ⋃𝐿
𝑖=𝑘+1

𝑉
𝑖 as the union of

the variables in layer higher than 𝑘. Define 𝑉𝑎 as the set of
variables appearing in action 𝑎’s preconditions and effects.
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Table 3: Variables of the smart factory task in Figure 7(b).

Tag Variable
V
1

AIMM loc
V
2

AGV1 loc
V
3

AGV2 loc
V
4

AIMM hand empty
V
5
–V
10

part1 loc - part6 loc
V
11
–V
16

part1 color - part6 color
V
17
–V
22

part1 polished - part6 polished
V
23

assembled p1 p2
V
24

assembled p1 p3
V
25

assembled p4 p5
V
26

assembled p4 p6

Low 
layer

High 
layer

�1 �2

�3 �4 �5 �6

�7�8 �9�10�11 �12�14�13

Figure 8: Combine the variables in strongly connected components.

Definition 5. The hierarchical option 𝑜𝑎 at layer 𝑘 is an active
option (ACO) if and only if 𝑉𝑎 ⊆ 𝑉𝑘−. The set of ACOs in
layer 𝑘 is denoted by �̂�𝑘.

Definition 6. The hierarchical option 𝑜𝑎 at layer 𝑘 is an
abstract option (ABO) if and only if 𝑜𝑎(pc) ∩ 𝑉𝑘 ̸= ⌀ and
𝑉
𝑎
∩ 𝑉
𝑘+

̸= ⌀. The set of ABOs in layer 𝑘 is denoted by �̃�𝑘.

In layer 𝑘, the ACOs are options that all the associated
variables are within the 𝑘th and above layer. So the ACO
in layer 𝑘 is fully abstracted. It can be used for solving the
Semi-MDPs. The ABOs of layer 𝑘 are options that satisfy
two conditions: firstly existing variable both in the option’s
precondition and in layer 𝑘; secondly existing variable in
higher layer than 𝑘. Following the definitions, the hierarchical
option in the 𝑘th layer is derived as Algorithm 2.

For example, in the low layer of the smart factory
task, all the “move” actions are ACOs. The “pickup” and
“putdown” actions satisfy the ABO conditions. The action
“Pickup AIMM store part1” is abstracted to option, which
induces “AIMM loc = store spot” as a subgoal. Similarly in
layer two, all the “pickup” and “putdown” options become
ACOs.The actions “polish”, “paint”, and “assemble” areABOs
abstracted into options.

The options of one task are also independent of the initial
and goal states, but they only depend on the task definitions
of variable, domain, and actions. As a result, they can be
calculated offline.

(1) for each 𝑜𝑎
𝑖
∈ 𝑂
𝑘

(2) if 𝑉𝑎 ⊆ 𝑉𝑘− // this is an ACO
(3) Add 𝑜𝑎

𝑖
to �̂�𝑘

(4) else if 𝑜𝑎
𝑖
(pc) ∩ 𝑉𝑘 ̸= ⌀ // this is an ABO

(5) Add 𝑜𝑎
𝑖
to �̃�𝑘

(6) 𝑉
𝑎,𝑘

𝑖
= 𝑜
𝑎

𝑖
(pc) ∩ 𝑉𝑘

(7) 𝑜
𝑎

𝑖+1
= (𝑜
𝑎

𝑖
, 𝑜
𝑎

𝑖
(pc) − 𝑉𝑎,𝑘

𝑖
, 𝛽
𝑎,𝑘

𝑖
, 𝜋)

(8) Add 𝑜𝑎
𝑖+1

to 𝑂𝑘+1
(9) else // neither ACO nor ABO
(10) Add 𝑜𝑎

𝑖
to 𝑂𝑘+1

(11) endif
(12) end for

Algorithm 2: Abstract options in the 𝑘th layer.

5.4. Solve the Hierarchical Semi-MDPs. A Semi-Markov
Decision Process (SMDP) is a MDP model with temporally
extended actions [32]. Efforts have been done to extend
planning algorithms from MDP to SMDP problems [25]. As
described above, the options abstracted in this study are also
temporally extended. The subtasks relying on these options
are consequently SMDPs.

Definition 7. The SMDP problem is defined as four-tuple Σ =
(𝑉,𝐷,𝑂, 𝛽) where 𝑉 is the variable set; 𝐷 is the domain set;
𝑂 is the option set; 𝛽 is the goal for this problem.

The solution of a SMDP problem is a policy 𝜋, mapping
from states to options. To calculate the policy there are a
bunch of algorithms extended from MDP problems, such as
Dynamic Programming based on Bellman equation. For any
state 𝑠 ∈ 𝑆, the value function of policy 𝜋 is

VF𝜋 (𝑠)

= 𝐸 {𝑟
𝑡
+ 𝑟
𝑡+1
+ ⋅ ⋅ ⋅ + 𝑟

𝑡+𝑘
+ VF𝜋 (𝑠

𝑡+𝑘
) | 𝜀 (𝜋 (𝑠) , 𝑠, 𝑡)}

= 𝑐
𝜋(𝑠)
(𝑠) + ∑

𝑠

∈𝑆

𝑝
𝜋(𝑠)
(𝑠

| 𝑠)VF𝜋 (𝑠) ,

(1)

where 𝜀(𝜋(𝑠), 𝑠, 𝑡) denotes the event of executing𝜋(𝑠) in state 𝑠
at time 𝑡 and 𝑡+𝑘 is the random time at which𝜋(𝑠) terminates.
𝑐
𝑜
(𝑠) and 𝑝𝑜(𝑠 | 𝑠) denote the cost and transition probability

of option 𝑜. They compose the option’s model.
The optimal value function is the one with maximum

value

VF∗ (𝑠) = max
𝜋

VF𝜋 (𝑠) = max
𝜋
𝐸 {𝑟
𝑡
+ 𝑟
𝑡+1
+ ⋅ ⋅ ⋅ + 𝑟

𝑡+𝑘

+ VF𝜋 (𝑠
𝑡+𝑘
) | 𝜀 (𝜋 (𝑠) , 𝑠, 𝑡)} = max

𝜋
[𝑐
𝜋(𝑠)
(𝑠)

+ ∑

𝑠

∈𝑆

𝑝
𝜋(𝑠)
(𝑠

| 𝑠)VF𝜋 (𝑠)] .

(2)
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Figure 9: Execution of option 𝑜 forms an execution tree.

The optimal policy is the one that maximizes the value
function

𝜋
∗
= argmax

𝜋
VF𝜋 (𝑠)

= argmax
𝜋
[𝑐
𝜋(𝑠)
(𝑠) + ∑

𝑠

∈𝑆

𝑝
𝜋(𝑠)
(𝑠

| 𝑠)VF𝜋 (𝑠)] .

(3)

To calculate the policy, one important issue is how to get
the models of the options in the option set. Since option 𝑜
is abstracted from a hierarchy, the outcome state 𝑠 and the
option cost 𝑐𝑜(𝑠) are random variables. According to Sutton
et al. [25], they proposed a multitime model

𝑝
𝑜
(𝑠

| 𝑠) =

∞

∑

𝑘=1

𝑝 (𝑠

, 𝑘) 𝛾
𝑘
, (4)

where 𝑝(𝑠, 𝑘) is the probability that the option terminates in
𝑠
 after 𝑘 steps and 𝛾 is a discount factor. On the other hand,
the cost of 𝑜 is a function of the state 𝑠:

𝑐
𝑜
(𝑠) = 𝐸 {𝑐

𝑡+1
+ 𝑐
𝑡+2
+ ⋅ ⋅ ⋅ + 𝑐

𝑡+𝑘
| 𝜀 (𝑜, 𝑠, 𝑡)} , (5)

where 𝜀(𝑜, 𝑠, 𝑡) denotes the event of 𝑜 being executed in state
𝑠 at time 𝑡 and 𝑡 +𝑘 is the random time at which 𝑜 terminates.

The subtask induced by abstract option 𝑜 in layer 𝑘 is
denoted by Σ𝑘

𝑜
= (𝑉
𝑘−
, 𝐷
𝑘−
, �̂�
𝑘

, 𝑜(𝛽)), where �̂�𝑘 is the ACO
set in this layer and 𝑜(𝛽) is the subgoal of option 𝑜. The
variables and domains are all subset of the original problem.
This makes the state space smaller.

According to the option hierarchy in Definition 4, the
execution of 𝑜 forms an execution tree. It is a recursive process
as Figure 9 shows. The execution consists of two phases. It
firstly follows the policy of the option and secondly calls the
father option.This process is done recursively until all options
reach down to the primitive actions, which lie on the leaf
nodes of the execution tree. For the leaf nodes, the costs are
equal to the cost of the primitive actions. In practice, the trees
usually are not very deep, two or three layers in our example.

As a result, let 𝑜 be the father of 𝑜; the cost of option 𝑜 is
represented by the following recursive formula:

𝑐
𝑜
(𝑠) = VF𝑜(𝜋) (𝑠) + 𝐸 {𝑐𝑜


(𝜋)
(𝑠

)}

= VF𝑜(𝜋) (𝑠) + ∑
𝑠


𝑝
𝑜

(𝜋)
(𝑠

| 𝑠) 𝑐
𝑜

(𝜋)
(𝑠

) ,

(6)

where 𝑠 is a random variable that denotes the state at which
it terminates when satisfying 𝑜(𝛽); and 𝑝𝑜


(𝜋)
(𝑠

| 𝑠) is

probability that the state terminates at 𝑠 following the policy
𝑜

(𝜋).
However in practice, the above model is difficult to com-

pute.One solution is to employmodel-free algorithms such as
Temporal Difference (TD) and 𝑄-learning. Instead of calcu-
lating, it just observes the outcome state and cost and updates
the value function with small steps. The TD form of the
updating rule is

VF𝜋 (𝑠) = (1 − 𝛼)VF𝜋 (𝑠) + 𝛼 [𝑐𝜋(𝑠) (𝑠) + VF𝜋 (𝑠)] , (7)

where

𝑐
𝑜
(𝑠) = VF𝑜(𝜋) (𝑠) + 𝑐𝑜


(𝜋)
(𝑠

) , (8)

where 𝛼 is the step size, 𝑜 = 𝑜(fa), 𝑠 is the outcome state after
the hierarchical tree of 𝑜 has completed, and 𝑠 is the outcome
state after policy 𝑜(𝜋) has terminated.

Similarly, the 𝑄-learning version of the updating rule is

VF𝜋 (𝑠) = (1 − 𝛼)VF𝜋 (𝑠) + 𝛼max
𝑜
[𝑐
𝑜
(𝑠) + 𝑉𝐹

𝜋
(𝑠

)] . (9)

The 𝑄-learning algorithm for SMDP problem is as in
Algorithm 3.

After the SMDP for option 𝑜 has been calculated, this
option has been abstracted in the current layer. Itmay become
an ACO of the higher layer or be abstracted again in higher
layer. In summary, this abstracting process and calculating
SMDP process are called iteratively from low layer to high
layer as Algorithm 4 shows.

Although the planning efficiency is remarkably improved,
the policy achieved by HOCA algorithm is not a global opti-
mal policy. Asmany hierarchical planners do [26, 27], HOCA
achieves a hierarchical optimal policy. This means that the
solution is optimal given the constraints of the hierarchy. It
is often a tradeoff. If we want a policy that is closer to the
global optimal one, we should use simpler hierarchy with
options of lower abstraction level. But if the speed is more
wanted, it needs more abstract options.

6. Experiments and Results

A smart factory was implemented based on the ubiq-
uitous robotic technology. A demonstration video could
be found in the Supplementary Material available online
at http://dx.doi.org/10.1155/2016/6018686 as well as in this
link: https://youtu.be/MVO4yGF0GwY. It took in customers’
individualized order and arranged the producing process
accordingly. Figure 10 shows one execution of the smart
factory task. First, the customer made an order through the
user interface. The order was then sent to the task planning
module, which calculated the action sequence hierarchically.
3D printers started to make parts with specific color and
shape as Figure 10(b). Meanwhile, the AIMM transported the
part from the storage to the polishing station as shown in
Figures 10(c)–10(e). After that, the dual-arm polishing robot
polished the part according to customer’s configuration as
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(1) problem Σ = (𝑉,𝐷,𝑂, 𝛽), initialize Value Function VF to zero
(2) while error > threshold
(3) 𝑠 = random state
(4) while 𝑠 not satisfy 𝛽
(5) for each 𝑜 ∈ 𝑂 that is applicable to 𝑠
(6) apply 𝑜 to 𝑠, observe the outcome state 𝑠 and cost 𝑐
(7) endfor
(8) VF(𝑠) = (1 − 𝛼)VF𝜋(𝑠) + 𝛼max

𝑜∈𝑂
[𝑐
𝑜
(𝑠) + VF(𝑠)]

(9) error = max(error, ΔVF(𝑠))
(10) 𝑠 = 𝑠



(11) end while
(12) end while
(13) 𝜋(𝑠) = argmax

𝑜∈𝑂
[𝑐
𝑜
(𝑠) + VF𝜋(𝑠)]

Algorithm 3: 𝑄-learning for SMDP.

(1) RMDP Π = (𝑉,𝐷, 𝐴, 𝐼, 𝐺), compute the causal graph CG using Algorithm 1
(2) combine the SCC of CG, obtain the task hierarchy Ζ = {𝑉0, 𝑉1, . . . , 𝑉𝐿}
(3) convert the primitive actions to options, add them to 𝑂0
(4) for each layer 0 ≤ 𝑘 ≤ 𝐿
(5) calculate ACO �̂�𝑘 set and ABO set �̃�𝑘 using Algorithm 2
(6) for each 𝑜 ∈ �̃�𝑘

(7) induce a sub-problem Σ𝑘
𝑜
= (𝑉
𝑘−
, 𝐷
𝑘−
, �̂�
𝑘

, 𝑜(𝛽))

(8) solve Σ𝑘
𝑜
using Algorithm 3, obtain the policy 𝑜(𝜋)

(9) endfor
(10) endfor
(11) divide G from high layer to low layer 𝐺 = {𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑙
}

(12) for each 𝑔
𝑖
∈ 𝐺, solve 𝑔

𝑖
using Algorithm 3, obtain the policy 𝑜

𝑖
(𝜋)

(13) the policy is a sequence 𝑜
1
(𝜋), 𝑜

2
(𝜋), . . . , 𝑜

𝑙
(𝜋)

Algorithm 4: Hierarchical option causal abstraction.

in Figure 10(f). At last, the parts were transported to the
assembling spot after which the product was successfully
processed as in Figures 10(g) and 10(h).

With the component based framework, every two of
the robotic devices are ready to cooperate with each other.
For instance, the continuous localization data is transferred
from the laser sensor to the AIMM’s path planning module
through data port. And the AIMM can pass the working part
directly onto the polishing robot, after calling on its service
port. Further, thismodular framework also facilitates the easy
expansion of new devices and painless modification of the
existing devices.

The hierarchical task planning method decomposes the
original big problem into a hierarchy of small problems. The
problem of smart factory in Figure 6 has 2.4𝑒 + 8 states. It
takes about 1700 episodes for the flat 𝑄-learning algorithm
to converge to the optimal value. HOCA algorithm is firstly
run offline to compute the causal graph and hierarchical
structure. Then according to the three-layer structure as
Figure 8 shows, two layers of option abstraction are applied.
Using HOCA algorithm described previously with one layer
of abstraction, namely, just using the abstracted options

“pickup” and “putdown”, it convergences in less than 1200
episodes. In this problem, it still converges to the optimal
value using one layer of abstraction (Figure 11).WhenHOCA
is run with two layers abstraction, in which case all the
primitive actions including “polish”, “paint”, and “assemble”
are abstracted, the convergence time is significantly reduced.
This is because the domain sizes of the high layer variables
are relatively small in this example. Using those abstracted
options, it only takes 4 or 5 steps to reach the goal (Figure 11).
However, it does not reach global optimal policy using two
layer abstractions. In the optimal solution, three working
parts are picked and placed on the AGV in sequence and
transferred together. This strategy is unavailable when using
highly abstracted options, in which the parts are transferred
one by one. We plan to study this problem in the next step.
It may achieve the global optimum if we flat the policy and
refine it with low layer options.

The improvements are even larger onmore complex tasks.
In the smart factory task in Figure 7(b), the size of the state
space is about 4.8𝑒 + 15. It is generally unsolvable for flat
algorithms. But for HOCA, it will not be much harder than
the previous task. The additional AGV and three working
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(a) One customer is placing an order (b) 3D printing working parts (c) AIMM is grasping the working part

(d) AIMM is transporting the part (e) Placing the part onto the polishing spot (f) Polishing the part

(g) Assembling two working parts (h) The order has been successfully processed

Figure 10: Manufacturing process in smart factory.
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Figure 11: Performance of HOCA under different abstractions against a flat 𝑄-learning.
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parts in this task have same domain and subtasks with the
ones in the previous task.Those subtasks are reused and bring
no extra computational loads for offline option abstractions.
The online iteration is still sustainable.

7. Conclusions

Given the increasing popularity of smart manufacturing as a
solution offering better autonomy, this paper discussed the
similarity of the smart manufacturing with the ubiquitous
robotic system. A component based framework has been pro-
posed and proved to be applicable for industrial domain. Fur-
ther, since the manufacturing problems are often in large size
with uncertainties, a hierarchical task planningmethod called
HOCA based on RMDP model has been developed. This
method decomposes the original big problem into a hierarchy
of small problems by automatically abstracting primitive
actions to a hierarchy of options according to variable
dependencies.

A smart factorywas implemented as the testing bed of our
framework and algorithms. The individualized orders were
processed by the system that arranged the producing process
accordingly.The results showed that the framework facilitates
the communication and cooperation between the robotic
components. Further the hierarchical planning method has
remarkably reduced the problem size and makes large prob-
lem tractable. However, the planner can only obtain hierar-
chical optimal results. This is the obvious defects and should
be improved in the future.

It is our view that the results obtained from this work
represent a substantial improvement. This method is not
restricted to the particular domain discussed in this paper. As
such, these results could also be beneficial to the researchers
attempting to design smart manufacturing systems for other
complex tasks in large-scale environment.
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